天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

長大坡度隧道掘進(jìn)機(jī)電液推進(jìn)系統(tǒng)關(guān)鍵技術(shù)研究

發(fā)布時(shí)間:2018-03-14 12:28

  本文選題:長大坡度隧道掘進(jìn)機(jī) 切入點(diǎn):推進(jìn)系統(tǒng) 出處:《浙江大學(xué)》2015年博士論文 論文類型:學(xué)位論文


【摘要】:全斷面隧道掘進(jìn)機(jī)是一種專用于隧道施工的掘進(jìn)裝備,可以實(shí)現(xiàn)隧道建設(shè)過程的開挖、支護(hù)、排渣等自動化作業(yè)。目前,針對普通平面隧道施工用的全斷面隧道掘進(jìn)機(jī)相關(guān)技術(shù)已經(jīng)基本成熟。但是在長大坡度隧道施工中,由于穿越地層深度跨度廣,埋深變化大,地質(zhì)條件更為復(fù)雜,對全斷面隧道掘進(jìn)機(jī)性能提出了更高要求,普通平面隧道掘進(jìn)機(jī)難以勝任。本文將針對長大坡度隧道施工對全斷面隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng)的特殊需求,通過理論分析、仿真研究和實(shí)驗(yàn)研究相結(jié)合的方法展開研究,具體內(nèi)容如下:第一章,介紹了隧道掘進(jìn)機(jī)工作原理及國內(nèi)外隧道掘進(jìn)機(jī)發(fā)展概況,分析了隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng)電液控制原理、姿態(tài)控制算法的研究現(xiàn)狀,提出了長大坡度隧道施工對隧道掘進(jìn)機(jī)的特殊需求,指出傳統(tǒng)的平面隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng)在長大坡度隧道施工中存在的問題。在此基礎(chǔ)上,對泵控差動液壓缸系統(tǒng)的實(shí)現(xiàn)原理、變量泵的動態(tài)特性及泵控系統(tǒng)閉環(huán)控制方法進(jìn)行了綜述,并提出了本文的主要研究內(nèi)容。第二章,設(shè)計(jì)了長大坡度隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng)的電液控制原理,指出變量泵為系統(tǒng)中的關(guān)鍵元件。對斜盤式軸向柱塞變量泵動態(tài)特性進(jìn)行了研究,建立了錐形缸體中柱塞的運(yùn)動學(xué)方程和動力學(xué)方程,得到了柱塞腔中的壓力動態(tài)分布,并分析了斜盤平均負(fù)載轉(zhuǎn)矩與斜盤傾角、斜盤傾角角速度,變量泵負(fù)載壓力、變量泵輸入軸轉(zhuǎn)速之間的關(guān)系。在此基礎(chǔ)上,對變量泵動態(tài)特性進(jìn)行簡化,便于控制器設(shè)計(jì)。第三章,對隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng)啟停過程中的壓力匹配控制動態(tài)特性進(jìn)行了分析,指出系統(tǒng)動態(tài)模型中存在切換特性、非最小相位特性以及較強(qiáng)的時(shí)變干擾,均對控制器設(shè)計(jì)造成不利影響。針對壓力動態(tài)中的時(shí)變干擾,采用干擾觀測器對時(shí)變干擾進(jìn)行估計(jì),將干擾估計(jì)值作為前饋以減小系統(tǒng)中的不確定性,并可保證干擾估計(jì)誤差的有界性。針對壓力動態(tài)中的非最小相位特性,采用輸出重定義方法對原系統(tǒng)進(jìn)行坐標(biāo)變換,使得變換后的系統(tǒng)相對重定義輸出為最小相位,并設(shè)計(jì)了重定義輸出的參考軌跡,保證了壓力瞬態(tài)跟蹤性能。針對壓力動態(tài)中的切換特性,采用共同Lyapunov函數(shù)法進(jìn)行反饋控制器的設(shè)計(jì),由于被控系統(tǒng)及前饋控制器的切換條件不同,誤差動態(tài)呈現(xiàn)出四個子系統(tǒng),采用共同Lyapunov函數(shù)法證明了控制器的穩(wěn)定性。通過仿真分析和實(shí)驗(yàn)對比,驗(yàn)證了上述控制算法的性能。第四章,建立隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng)的壓力動態(tài)模型,指出系統(tǒng)中存在較強(qiáng)的參數(shù)不確定性,此外,系統(tǒng)中還存在較強(qiáng)的飽和非線性現(xiàn)象。為保證系統(tǒng)在飽和輸入及參數(shù)不確定性下的動態(tài)性能及穩(wěn)定性,在控制器中引入指令濾波反步控制器,將虛擬控制作為二階濾波器的輸入信號,將輸出的濾波信號作為實(shí)際控制輸入,可保證濾波后的控制指令不會超過預(yù)設(shè)的幅值及速度限制,同時(shí)通過特殊構(gòu)造的控制率,使得閉環(huán)系統(tǒng)在執(zhí)行器飽和時(shí)仍可保證系統(tǒng)的穩(wěn)定性,此外亦可實(shí)現(xiàn)對虛擬控制及其導(dǎo)數(shù)信號的逼近,避免了對虛擬控制信號的解析求導(dǎo)過程,解決了backstepping方法中因?qū)μ摂M控制量求導(dǎo)而導(dǎo)致的“微分爆炸”現(xiàn)象。在此基礎(chǔ)上,采用復(fù)合自適應(yīng)方法,同時(shí)利用系統(tǒng)中的跟蹤誤差及預(yù)測誤差對參數(shù)進(jìn)行估計(jì)來達(dá)到快速自適應(yīng)的能力。通過仿真分析和實(shí)驗(yàn)對比,驗(yàn)證了上述控制算法的性能。第五章,針對推進(jìn)系統(tǒng)的速度控制,提出一種級聯(lián)控制策略,外環(huán)為速度控制器,內(nèi)環(huán)為壓力控制器,兩者之間互相獨(dú)立,這樣在速度控制器設(shè)計(jì)過程中可以忽略液壓缸壓力動態(tài),將其當(dāng)成理想的力產(chǎn)生器。為解決推進(jìn)系統(tǒng)速度控制中負(fù)載力不可測的問題,提出采用干擾力觀測器代替力傳感器,并將干擾力觀測值用于前饋控制,該觀測器可保證干擾誤差有界。通過仿真分析和實(shí)驗(yàn)對比,驗(yàn)證了上述控制算法的性能。第六章,分析了現(xiàn)有推進(jìn)系統(tǒng)分區(qū)方法,以減小管片損傷為目的,建立了推進(jìn)力均布性能評價(jià)指標(biāo),提出了基于四分區(qū)推進(jìn)系統(tǒng)的重構(gòu)方法,并基于此進(jìn)行推進(jìn)系統(tǒng)的動態(tài)重構(gòu)。將可重構(gòu)系統(tǒng)應(yīng)用于某型隧道掘進(jìn)機(jī)推進(jìn)系統(tǒng),分析了其對不同地質(zhì)條件的適應(yīng)性,與固定四分區(qū)推進(jìn)系統(tǒng)相比,可重構(gòu)推進(jìn)系統(tǒng)可保證在較大阻扭矩下仍可保持較小的偏載。第七章,總結(jié)本論文的主要工作,闡述研究結(jié)論和創(chuàng)新點(diǎn),為未來本課題的進(jìn)一步研究提供了參考思路和方向。
[Abstract]:Tunnel boring machine is a kind of special construction in tunnel excavation equipment, can realize the construction process of tunnel excavation, supporting, slag and other automated operation. At present, the TBM tunnel construction with common plane related technology has been basically mature. But in the long slope in tunnel construction, due to the stratum depth wide span, depth changes, more complex geological conditions, put forward higher requirements on the performance of TBM, the common plane of tunnel boring machine is difficult to do. This article will focus on the growing up slope tunnel construction on tunnel boring machine to promote the special requirements of the system, through theoretical analysis, research methods and experimental research Study on the combination of simulation, the specific contents are as follows: the first chapter introduces the general situation of tunnel boring machine working principle and the domestic and foreign development of tunnel boring machine, tunnel boring machine The propulsion system of electric hydraulic control principle, research status of the attitude control algorithm, put forward special requirements on tunnel construction up slope tunnel boring machine, pointed out that the plane of TBM traditional propulsion system grew up in the existing problems in the construction of the tunnel slope. On this basis, the realization principle of pump controlled differential cylinder system, dynamic characteristics pump and variable pump control system closed-loop control methods are summarized, and put forward the main research contents of this paper. The second chapter, the design principle of electro-hydraulic control system up slope tunnel boring machine, pointed out that the variable pump as the key components in the system. The swash plate axial piston variable pump dynamic characteristic were studied. And establish the kinematic equations and dynamic equations of conical plunger in the cylinder, the dynamic pressure distribution of plunger chamber, and analyzes the swashplate average load torque and swash plate angle, Swash plate angle angular velocity, variable pump load pressure variable pump input shaft speed, the relationship between. On this basis, the dynamic characteristics of the variable pump was simplified for controller design. The third chapter of the propulsion system of tunnel boring machine start and stop the pressure in the process of matching control dynamic characteristic is analyzed, pointed out the existence of switching characteristics the system dynamic model, the non minimum phase characteristics and strong disturbance, causing adverse effects on the controller design for dynamic pressure. The time-varying disturbance, disturbance observer using time-varying disturbance estimation, the disturbance estimation value as the feedforward to reduce the uncertainty in the system, and can guarantee the estimation error of the interference bound. For a non minimum phase characteristic of pressure dynamic, the output redefinition method for coordinate transformation of the original system, the system transforms the relative output redefinition is minimum The design phase, and the reference trajectory output redefinition, the pressure transient tracking performance. The switching characteristics of dynamic pressure in the design of feedback controller using the common Lyapunov function method, the switching condition controlled system and feedforward controller, dynamic error showing four subsystems, using the common Lyapunov function is proved. The stability of the controller. Through the simulation analysis and experimental comparison, verify the performance of the control algorithm. In the fourth chapter, the establishment of TBM forward pressure dynamic model of the system, points out that the uncertainty in the system parameters, strong in addition, strong nonlinear saturation phenomenon also exists in the system. In order to guarantee the dynamic performance and stability of the system in the input saturation and parameter uncertainty, command filter backstepping controller is introduced in the controller, the virtual control as two order filter The input signal, the output signal of the filter as the actual control input, can ensure the filter after the control instruction does not exceed preset amplitude and speed limits, and to control the special structure of the rate, resulting in a closed-loop system with actuator saturation can guarantee the stability of the system, in addition to approximate the virtual control signal can be realized and its derivatives, avoid the analytical derivation of the virtual control signal, the backstepping method for solving the virtual control due to the derivation of "explosion" phenomenon. On this basis, the composite adaptive method, the tracking error and the prediction error in the system are estimated to achieve the fast adaptive of parameters. Through the simulation analysis and the experiments verify the performance of the control algorithm. In the fifth chapter, according to the propulsion system of speed control, this paper proposes a cascaded control strategy, The outer loop is the speed controller, inner pressure controller, both independently of each other, so ignore the pressure of the hydraulic cylinder can be dynamic in the speed controller design process, it as the ideal force generator. In order to solve the load force can not be measured in the velocity control of propulsion system problems, put forward the interference force observer instead of the force sensor, and the observations for interference force feedforward control, the observer can guarantee the bounded disturbance error. Through simulation analysis and experimental comparison, verify the performance of the control algorithm. The sixth chapter analyzes the existing propulsion system partition method to reduce tube damage for the purpose of establishing the uniform propulsion performance evaluation index is put forward the four partition system reconstruction method based on boosting, and based on the dynamic reconfiguration of the propulsion system. The reconfigurable system is applied to a certain type of tunnel boring machine propulsion system, analyses the Different geological conditions of adaptability, compared with the fixed partition four propulsion system, reconfigurable propulsion system can ensure the partial load in the larger resistance torque can be maintained at smaller. In the seventh chapter, we summarize the main work of this paper, on the conclusion of the study and innovation, to provide a reference and direction for the future of this topic further research.

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:U455.31

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李惠平,夏明耀;盾構(gòu)姿態(tài)自動控制技術(shù)的應(yīng)用與發(fā)展[J];地下空間;2003年01期

2 高強(qiáng);金勇;王力;侯遠(yuǎn)龍;季麗君;;泵控缸電液位置伺服系統(tǒng)建模研究[J];兵工學(xué)報(bào);2011年08期

3 張孝松,羅俊軍;龍灘水電站輸水發(fā)電系統(tǒng)布置設(shè)計(jì)及研究[J];紅水河;2001年02期

4 胡國良;龔國芳;楊華勇;;基于壓力流量復(fù)合控制的盾構(gòu)推進(jìn)液壓系統(tǒng)[J];機(jī)械工程學(xué)報(bào);2006年06期

5 趙勇;王皓;余海東;來新民;林忠欽;;基于剛度匹配的盾構(gòu)掘進(jìn)機(jī)械系統(tǒng)順應(yīng)性評價(jià)方法[J];中國科學(xué):技術(shù)科學(xué);2012年10期

6 劉泉聲;黃興;時(shí)凱;劉學(xué)偉;;煤礦超千米深部全斷面巖石巷道掘進(jìn)機(jī)的提出及關(guān)鍵巖石力學(xué)問題[J];煤炭學(xué)報(bào);2012年12期

7 李楊;張學(xué)韜;白韜光;;管片分塊與盾構(gòu)推進(jìn)油缸布置的研究[J];建筑機(jī)械化;2013年11期

8 王夢恕;;中國盾構(gòu)和掘進(jìn)機(jī)隧道技術(shù)現(xiàn)狀、存在的問題及發(fā)展思路[J];隧道建設(shè);2014年03期

9 ;A stiffness-matching based evaluation approach for compliance of mechanical systems in shield tunneling machines[J];Science China(Technological Sciences);2012年10期

10 ;鐵建重工研制雙模式煤礦斜井TBM通過驗(yàn)收[J];隧道建設(shè);2013年09期

相關(guān)博士學(xué)位論文 前7條

1 張紅娟;變轉(zhuǎn)速泵控差動缸及低能耗注塑機(jī)技術(shù)研究[D];太原理工大學(xué);2011年

2 胡國良;盾構(gòu)模擬試驗(yàn)平臺電液控制系統(tǒng)關(guān)鍵技術(shù)研究[D];浙江大學(xué);2006年

3 胡柯;切換系統(tǒng)穩(wěn)定性及時(shí)滯相關(guān)問題研究[D];上海交通大學(xué);2008年

4 張斌;軸向柱塞泵的虛擬樣機(jī)及油膜壓力特性研究[D];浙江大學(xué);2009年

5 張軍輝;面向軸向柱塞泵降噪的配流盤及配流方法研究[D];浙江大學(xué);2013年

6 王成賓;伺服變量泵和泵控差動缸系統(tǒng)理論分析及靜動態(tài)特性研究[D];太原理工大學(xué);2014年

7 石勝利;具有輸入飽和的電液伺服位置系統(tǒng)魯棒控制研究[D];燕山大學(xué);2014年

相關(guān)碩士學(xué)位論文 前4條

1 周如林;盾構(gòu)掘進(jìn)模擬試驗(yàn)系統(tǒng)設(shè)計(jì)及研究[D];浙江大學(xué);2011年

2 范文君;非最小相位系統(tǒng)魯棒控制及應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2009年

3 秦彥凱;電液比例變排量軸向柱塞泵控制特性研究[D];太原理工大學(xué);2012年

4 李志帥;軟土地層盾構(gòu)掘進(jìn)姿態(tài)控制技術(shù)研究[D];北京交通大學(xué);2013年

,

本文編號:1611206

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1611206.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3b3e8***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com