天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 路橋論文 >

脫粘對鋼管混凝土拱橋動力特性影響研究

發(fā)布時間:2018-02-11 01:42

  本文關(guān)鍵詞: 脫粘 動力特性 鋼管混凝土拱橋 參數(shù)分析 出處:《長沙理工大學》2015年碩士論文 論文類型:學位論文


【摘要】:脫粘是鋼管混凝土拱橋在運營中的比較普遍的實際工程問題。為了解脫粘對桁架式鋼管混凝土拱橋動力性能的影響,本文基于完全脫粘假設(shè)選取了恰當?shù)倪B接單元,運用ANSYS軟件建立了總溪河大橋脫粘與完全粘結(jié)模型。并研究不同脫粘位置及脫粘范圍對鋼管混凝土拱橋的動力特性的影響。最后對考慮不同的脫粘高度、不同含鋼率、內(nèi)法蘭的作用和不同的軸向粘結(jié)剛度的鋼管混凝土拱橋在全跨完全脫粘后的自振特性進行分析。主要研究成果如下:(1)橋梁發(fā)生脫粘后前十階的振型的基本形狀不會改變,只有與主拱肋相關(guān)的振型出現(xiàn)的順序會發(fā)生變動。變動中以主拱肋的一階對稱與反對稱豎彎振型提前為主。主要原因是主拱肋發(fā)生脫粘后會導致拱肋的面內(nèi)剛度下降。(2)脫粘發(fā)生后主拱肋的各階振型對應的頻率會發(fā)生下降,且隨著脫粘范圍的增加,下降幅度也越大。脫粘對于面內(nèi)反對稱振型的頻率影響尤為明顯。不同脫粘位置相同的脫粘范圍對主拱肋的各階振型對應的頻率的影響中,雙側(cè)拱腳脫粘大于單側(cè)拱腳脫粘,單側(cè)拱腳脫粘大于跨中拱肋脫粘。(3)全跨完全脫粘,脫粘模擬單元考慮的粘結(jié)強度在0.05MPa~0.3 MPa時,隨著粘結(jié)強度的增加,橋梁整體的各階振動頻率均有所增加,但增幅較小。面內(nèi)振型對應的頻率對粘結(jié)強度的變化較為敏感。脫粘高度在0.5mm~3.5mm的范圍內(nèi)時,各階振型對應的頻率對脫粘高度的變化不敏感。含鋼率的變化對橋梁面內(nèi)振型頻率的影響強于其對面外振型頻率的影響。含鋼率在5%~13.3%的范圍內(nèi)時,隨著含鋼率的增加,脫粘對鋼管混凝土拱橋的各階振動頻率的影響會有所減弱。。內(nèi)法蘭能改善脫粘后鋼管混凝土拱橋的動力性能。
[Abstract]:Debonding is a common practical engineering problem in the operation of CFST arch bridge. In order to remove the influence of adhesion on the dynamic performance of truss CFST arch bridge, a suitable connecting element is selected based on the assumption of complete debonding. The model of debonding and complete bonding of Tongxihe Bridge is established by using ANSYS software. The influence of different debonding position and range on the dynamic characteristics of concrete-filled steel tubular arch bridge is studied. Finally, considering different debonding heights and different steel content, the dynamic behavior of concrete-filled steel tubular arch bridge is studied. The effect of internal flange and the natural vibration characteristics of concrete-filled steel tube arch bridge with different axial bonding stiffness after full span debonding are analyzed. The main research results are as follows: 1) the basic shape of the first ten modes of the bridge after debonding will not change. Only the order in which the modes associated with the main arch rib appear will change. The first order symmetry and antisymmetric vertical bending mode of the main arch rib are dominant in the change. The main reason is that the in-plane stiffness of the arch rib will be caused by the debonding of the main arch rib. The frequency corresponding to the modes of each order of the main arch rib will decrease after the occurrence of debonding. With the increase of the range of debonding, the decreasing amplitude is larger. The effect of debonding on the frequency of in-plane antisymmetric mode is especially obvious. The effect of the same debonding range on the frequency corresponding to the modes of each order of the main arch rib is discussed. The debonding of bilateral arch foot is greater than that of unilateral arch foot, and that of unilateral arch foot is larger than that of mid-span arch rib. (3) the whole span is completely debonded. When the bond strength considered by the debonding simulation unit is 0. 05 MPA / 0. 3 MPa, the bond strength increases with the increase of bond strength. The vibration frequencies of the whole bridge are increased, but the increase is small. The frequency corresponding to the in-plane mode is more sensitive to the change of bond strength. When the debonding height is in the range of 0.5 mm to 3.5 mm, The frequency corresponding to each order mode is insensitive to the change of debonding height. The influence of the change of steel-containing ratio on the in-plane mode frequency of the bridge is stronger than that on the external mode frequency. When the steel content ratio is within the range of 5% or 13.3%, with the increase of the steel content, the influence of the change of the steel content on the in-plane mode frequency of the bridge is stronger than that of the external mode frequency. The influence of debonding on the vibration frequency of CFST arch bridge is weakened. The internal flange can improve the dynamic performance of CFST arch bridge after debonding.
【學位授予單位】:長沙理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U441.3

【參考文獻】

相關(guān)期刊論文 前10條

1 陳景星;馮忠居;胡鋒;;吊桿損傷對鋼管混凝土拱橋動力特性的影響[J];公路交通科技;2013年03期

2 劉雪鋒;涂光亞;易壯鵬;;鋼管與核心混凝土之間的粘結(jié)單元及其應用[J];中外公路;2012年06期

3 劉振宇;陳寶春;;鋼管混凝土桁拱熱脫粘及溫度應力分析[J];公路交通科技;2011年07期

4 涂光亞;顏東煌;邵旭東;易壯鵬;;脫粘對桁架式鋼管混凝土拱肋剛度影響研究[J];公路交通科技;2011年02期

5 涂光亞;顏東煌;邵旭東;;脫粘對單圓管鋼管混凝土拱橋極限承載力的影響[J];哈爾濱工業(yè)大學學報;2010年12期

6 李玲瑤;陳政清;葛耀君;;鋼管混凝土拱橋拱肋橫撐對動力和穩(wěn)定性的影響[J];公路交通科技;2008年03期

7 劉永健;池建軍;;鋼管混凝土界面抗剪粘結(jié)強度的推出試驗[J];工業(yè)建筑;2006年04期

8 廖渭揚,黃福偉,周海龍;鋼管混凝土拱橋拱肋混凝土缺陷及檢測方法簡介[J];甘肅科技;2005年10期

9 熊峰,劉浩吾;鋼管混凝土模型拱動力特性分析[J];西南交通大學學報;2005年02期

10 陳寶春,韋建剛;鋼管混凝土(單圓管)拱肋剛度對其動力特性的影響[J];地震工程與工程振動;2004年03期

相關(guān)碩士學位論文 前3條

1 蘇俊臣;鋼管混凝土拱橋調(diào)查及其脫空問題研究[D];西南交通大學;2012年

2 楊毅;鋼管與混凝土結(jié)合狀態(tài)對鋼管混凝土拱橋穩(wěn)定性影響研究[D];湖南大學;2007年

3 章慶軍;鋼管砼拱極限承載力的非線性分析[D];浙江大學;2004年

,

本文編號:1501928

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1501928.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶dd7a9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com