鋼桁梁斜拉橋主梁無應(yīng)力構(gòu)形計算及應(yīng)用
本文關(guān)鍵詞: 鋼桁梁斜拉橋 施工控制 無應(yīng)力構(gòu)形計算 剛度等效 出處:《長沙理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,隨著我國鋼材的冶煉技術(shù)和桁梁施工工藝的蓬勃發(fā)展,以桁架為主梁的鋼桁梁斜拉橋大量涌現(xiàn),尤其在山區(qū)和跨江大河的大跨橋梁的修建與日俱增。鋼桁梁能適用特殊地形條件地區(qū)橋梁的建造,對山區(qū)橋梁構(gòu)件的運輸和安裝顯示較強的競爭力,具有跨越能力大、結(jié)構(gòu)輕盈美觀、經(jīng)濟性高、耐久性好、綠色環(huán)保等優(yōu)點。但是由于桁梁施工操作復(fù)雜,結(jié)構(gòu)桿件繁多,構(gòu)件生產(chǎn)與安裝精度要求較高,需要一套系統(tǒng)的施工控制體系來支撐,以保證成橋之后的幾何線形與內(nèi)力狀態(tài)。本文以鋼桁梁斜拉橋施工控制中無應(yīng)力構(gòu)形控制法為主線,做了以下研究并得到了相應(yīng)的結(jié)論:(1)從施工控制的角度介紹了在斜拉橋上的研究概況,闡述了無應(yīng)力構(gòu)形控制方法的計算理論,對大跨橋梁的幾何非線性問題作了具體論述,研究了制造線形、安裝線形和無應(yīng)力構(gòu)形相互的分別與聯(lián)系,同時理論上計算模型中的初始計算點位應(yīng)該是制造線形上的點位坐標(biāo)。(2)闡述了鋼桁梁節(jié)點、節(jié)段分割點及錨點的無應(yīng)力位置的確定的計算方法,系統(tǒng)研究了鋼桁梁主梁無應(yīng)力構(gòu)形計算的原理、方法、步驟和流程,以及節(jié)點板規(guī)格類型合并考慮因素及原則。對關(guān)心的主梁無應(yīng)力構(gòu)形計算的問題,系統(tǒng)的分析與研究了相鄰梁段之間開口值的計算方法、節(jié)點板規(guī)格類型統(tǒng)一以及節(jié)點板螺孔間距與開口值的關(guān)系,形成了主梁無應(yīng)力構(gòu)形計算的控制體系。(3)研究了鋼桁梁主梁剛度等效分析,得到了空間普拉特式桁架和華倫式桁架模型與平面桁架模型、單梁模型等效時的平聯(lián)剛度修正系數(shù)和剪切剛度修正系數(shù),及其與桁高、節(jié)間長的關(guān)系曲線圖和擬合公式,等效后的平面模型減少了建模的單元數(shù)與節(jié)點數(shù),能顯著提高分析計算的效率。(4)建立了忠建河橋的有限元數(shù)值模型,對鋼桁梁斜拉橋臨時固結(jié)、邊界條件、荷載施加提供了簡便的處理方法。主梁無應(yīng)力構(gòu)形計算控制體系在此橋進行了運用,得到了規(guī)格較少、類型統(tǒng)一、施工方便、便于管理的節(jié)點板構(gòu)件制造數(shù)據(jù)。(5)對結(jié)構(gòu)設(shè)計參數(shù)進行了敏感性分析,得到了敏感程度高低依次為鋼桁梁梁段自重、斜拉索自重、施工臨時荷載、主梁彈模和斜拉索彈模;同時通過主梁中跨合龍后的實測線形與理論線形吻合良好,證明了無應(yīng)力構(gòu)形控制法在鋼桁梁斜拉橋上實踐的成功。
[Abstract]:In recent years, with the rapid development of steel smelting technology and truss construction technology in China, a large number of steel truss cable-stayed bridges with truss as the main beam have emerged. Especially in the mountainous area and across the river the construction of long-span bridges is increasing. Steel truss beams can be used for the construction of bridges in the area of special terrain conditions and show strong competitiveness for the transport and installation of bridge components in mountainous areas. It has many advantages, such as large span ability, light and beautiful structure, high economy, good durability, green environmental protection and so on. However, because of the complex construction operation of truss beam and numerous structural members, the production and installation accuracy of the members is high. A set of systematic construction control system is needed to ensure the geometric alignment and internal force state after completion of the bridge. The main line of this paper is the non-stress configuration control method in the construction control of steel truss cable-stayed bridge. The following research is done and the corresponding conclusion: 1) from the point of view of construction control, the research situation on cable-stayed bridge is introduced, and the calculation theory of no-stress configuration control method is expounded. The geometric nonlinearity of long-span bridges is discussed in detail, and the relationship between the fabrication of lines, the installation of lines and the non-stress configurations is studied. At the same time, the initial calculated points in the model should be the point coordinates on the manufacturing line.) the calculation method of the unstressed position of the steel truss joints, segmental segmentation points and anchors is expounded in this paper. This paper systematically studies the principle, method, procedure and flow of the calculation of the unstressed configuration of the main beam of steel truss beam, as well as the consideration of the factors and principles of the joint plate specification type and the problems of the calculation of the non-stress configuration of the main beam concerned. The calculation method of the opening value between adjacent beam segments, the uniform specification type of the joint plate and the relationship between the pitch between the screw holes and the opening value of the joint plate are analyzed and studied systematically. The equivalent stiffness analysis of the steel truss girder is studied, and the space Platt truss model, the Warren truss model and the plane truss model are obtained. When the single beam model is equivalent, the plane stiffness correction coefficient and shear stiffness correction coefficient, as well as their relationship with truss height, Internode length, curve diagram and fitting formula, the equivalent plane model reduces the number of elements and nodes in the model. The finite element numerical model of Zhongjian River Bridge is established, and the temporary consolidation and boundary conditions of steel truss cable-stayed bridge are obtained. The calculation and control system of the non-stress configuration of the main beam is applied in this bridge, which has less specification, uniform type and convenient construction. The design parameters of the structure are analyzed in order of the weight of steel truss beam section, the weight of stay cable and the temporary load of construction. Main beam elastic modulus and stay cable elastic modulus; At the same time, it is proved that the non-stress configuration control method is successful in the practice of cable-stayed bridge with steel truss beam, and the measured alignment is in good agreement with the theoretical alignment after the mid-span closure of the main beam.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U448.27
【相似文獻】
相關(guān)期刊論文 前10條
1 魏建東,劉山洪,錢永久;柔性吊橋無應(yīng)力初始狀態(tài)的確定[J];重慶交通學(xué)院學(xué)報;2003年02期
2 張雷明,劉西拉;當(dāng)前無應(yīng)力構(gòu)形在結(jié)構(gòu)動力分析中的應(yīng)用[J];巖石力學(xué)與工程學(xué)報;2004年21期
3 秦順全;;分階段施工橋梁的無應(yīng)力狀態(tài)控制法[J];橋梁建設(shè);2008年01期
4 李傳習(xí);王琛;董創(chuàng)文;李紅利;;基于相位變換的頂推曲梁橋自適應(yīng)無應(yīng)力構(gòu)形控制[J];中國公路學(xué)報;2014年02期
5 彭曉林;徐小霞;;分階段施工橋梁的無應(yīng)力狀態(tài)控制法[J];交通世界(建養(yǎng).機械);2013年11期
6 陳應(yīng)高;卜一之;呂明;;蘇通大橋主橋鋼箱梁無應(yīng)力線形的確定方法[J];四川建筑;2008年02期
7 梁鵬;肖汝誠;徐岳;;超大跨度斜拉橋的安裝構(gòu)形與無應(yīng)力構(gòu)形[J];長安大學(xué)學(xué)報(自然科學(xué)版);2006年04期
8 許磊平;秦順全;馬潤平;;基于平面殼單元的分階段成形結(jié)構(gòu)平衡方程[J];西南交通大學(xué)學(xué)報;2013年05期
9 朱德海;;吊桿張拉無應(yīng)力長度控制法誤差影響分析[J];低溫建筑技術(shù);2014年03期
10 肖恩源;索的特性(續(xù))[J];公路;1997年06期
相關(guān)會議論文 前4條
1 秦順全;;分階段施工橋梁的無應(yīng)力狀態(tài)控制法[A];第十八屆全國橋梁學(xué)術(shù)會議論文集(下冊)[C];2008年
2 顏東煌;陳常松;董道福;涂光亞;;大跨度鋼斜拉橋施工的自適應(yīng)無應(yīng)力構(gòu)形控制[A];第二十屆全國橋梁學(xué)術(shù)會議論文集(上冊)[C];2012年
3 秦順全;;斜拉橋安裝的無應(yīng)力狀態(tài)控制法[A];第十六屆全國橋梁學(xué)術(shù)會議論文集(上冊)[C];2004年
4 謝官模;苗潤池;;大跨度斜拉-懸索協(xié)作體系橋纜索無應(yīng)力長度研究[A];第19屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅱ冊)[C];2010年
相關(guān)碩士學(xué)位論文 前4條
1 劉燦;鋼桁梁斜拉橋主梁無應(yīng)力構(gòu)形計算及應(yīng)用[D];長沙理工大學(xué);2015年
2 李凱樂;大跨鋼斜拉橋主梁無應(yīng)力構(gòu)形法研究[D];長沙理工大學(xué);2009年
3 潘杰;大跨度混合梁斜拉橋無應(yīng)力構(gòu)形的應(yīng)用研究[D];長沙理工大學(xué);2010年
4 張永強;超大跨度斜拉橋自適應(yīng)無應(yīng)力構(gòu)形控制法理論研究[D];長沙理工大學(xué);2008年
,本文編號:1473327
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1473327.html