城市軌道交通盾構(gòu)下穿既有高速鐵路的相互作用研究
本文關(guān)鍵詞:城市軌道交通盾構(gòu)下穿既有高速鐵路的相互作用研究 出處:《北京交通大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 高速鐵路 無(wú)砟軌道 不均勻沉降 盾構(gòu) 耦合動(dòng)力學(xué)
【摘要】:城市軌道交通因其快速、便捷、方便、舒適、占地少、載客量大以及運(yùn)營(yíng)安全等特點(diǎn)作為支撐城市正常運(yùn)行的大動(dòng)脈在全國(guó)各大城市得到了迅速大規(guī)模的發(fā)展。同時(shí),經(jīng)過(guò)高速鐵路建設(shè)和對(duì)既有鐵路的高速化改造,我國(guó)已擁有全世界最大規(guī)模以及最高運(yùn)營(yíng)速度的高速鐵路網(wǎng)。兩者的線路在特定的空間位置不可避免地產(chǎn)生交叉。為了減少土地占用和對(duì)既有交通的影響,同時(shí)為了降低工程成本和對(duì)周圍環(huán)境的影響,城市軌道交通下穿既有高鐵線路成為主要形式,但下穿施工會(huì)導(dǎo)致既有高鐵線路變形,產(chǎn)生軌道不平順等現(xiàn)象,影響列車運(yùn)行的平穩(wěn)性和乘客的舒適性,并給列車運(yùn)行安全帶來(lái)隱患,同時(shí)列車的運(yùn)行會(huì)給下穿施工和隧道的運(yùn)營(yíng)帶來(lái)激擾,對(duì)兩者相互作用關(guān)系進(jìn)行研究顯得十分必要。 本文以某城市軌道盾構(gòu)下穿既有高鐵線路為工程背景,利用ABAQUS有限元軟件對(duì)盾構(gòu)開(kāi)挖施工進(jìn)行了仿真,研究了開(kāi)挖沉降規(guī)律;并基于車輛-軌道耦合動(dòng)力學(xué)理論建立了車輛-軌道-路基-下穿隧道耦合精細(xì)化動(dòng)力學(xué)模型,分析了隧道開(kāi)挖施工、運(yùn)營(yíng)與既有高速鐵路線路列車運(yùn)行的相互影響。主要研究成果如下: (1)建立了大尺度、精細(xì)化、接近工程實(shí)際的無(wú)砟軌道-路基-地基開(kāi)挖模型和車輛-無(wú)砟軌道-路基-下穿隧道耦合動(dòng)力學(xué)模型 基于有限元軟件ABAQUS豐富的巖土材料本構(gòu)模型,建立了無(wú)砟軌道-路基-下穿隧道實(shí)體模型,利用生死單元技術(shù)模擬土體開(kāi)挖、管片安裝、盾尾脫空、壁后注漿等盾構(gòu)施工過(guò)程;依靠輪軌動(dòng)力學(xué)原理,通過(guò)Explicit模塊罰函數(shù)接觸屬性建立車輛-無(wú)砟軌道-路基-下穿隧道耦合動(dòng)力學(xué)模型。 (2)揭示了盾構(gòu)開(kāi)挖過(guò)程中既有高鐵軌道結(jié)構(gòu)的沉降規(guī)律并考慮不同埋深和開(kāi)挖半徑的影響 基于所建立的無(wú)砟軌道-路基-地基開(kāi)挖模型,研究了盾構(gòu)開(kāi)挖至距高鐵線路不同位置處,既有高鐵軌道的沉降規(guī)律,并對(duì)不同隧道埋深、不同開(kāi)挖直徑的工況進(jìn)行沉降規(guī)律對(duì)比分析,結(jié)合現(xiàn)有的高速鐵路設(shè)計(jì)規(guī)范對(duì)開(kāi)挖導(dǎo)致的不均勻沉降進(jìn)行評(píng)估。 (3)分析了盾構(gòu)開(kāi)挖至不同位置處和不同速度的高鐵列車通過(guò)時(shí)既有軌道結(jié)構(gòu)和下穿隧道的動(dòng)力響應(yīng) 在所建立的車輛-無(wú)砟軌道-路基-下穿隧道模型基礎(chǔ)上,將盾構(gòu)施工導(dǎo)致的不平順賦予給無(wú)砟軌道結(jié)構(gòu),探索開(kāi)挖至距既有高鐵線路不同位置處列車運(yùn)行時(shí)軌道結(jié)構(gòu)的動(dòng)力響應(yīng),并對(duì)不同速度列車運(yùn)營(yíng)進(jìn)行對(duì)比,研究表明,各車輛系統(tǒng)動(dòng)力指標(biāo)均在安全范圍之內(nèi)。 (4)研究了開(kāi)挖離縫擴(kuò)展后各結(jié)構(gòu)的動(dòng)態(tài)響應(yīng)規(guī)律 在ABAQUS模型中,離縫區(qū)域之外軌道板與砂漿層設(shè)置tie綁定接觸屬性(模擬實(shí)際中的“粘結(jié)”作用),在離縫區(qū)域采用鐵路通用的正弦曲線模擬層間離縫,分析了0~15mm離縫量下各結(jié)構(gòu)層的動(dòng)態(tài)響應(yīng)。
[Abstract]:Because of its fast, convenient, convenient and comfortable, urban rail transit occupies less land. As the main artery supporting the normal operation of the city, the large passenger capacity and operation safety have been developed rapidly and large-scale in the major cities of the country. At the same time, through the high-speed railway construction and high-speed transformation of the existing railway. China has the world's largest high-speed railway network with the highest operating speed. The two routes inevitably cross in a specific space. In order to reduce land occupation and the impact on existing traffic. At the same time, in order to reduce the cost of the project and the impact on the surrounding environment, urban rail transit under the existing high-speed rail lines become the main form, but the construction will lead to the deformation of existing high-speed rail lines, resulting in track irregularity and other phenomena. It affects the smooth running of the train and the comfort of the passengers, and brings hidden trouble to the safety of the train operation. At the same time, the running of the train will cause disturbance to the construction of the underpass and the operation of the tunnel. It is necessary to study the relationship between them. In this paper, based on the engineering background of an existing high-speed railway under a city rail shield, the excavation construction of shield is simulated by using ABAQUS finite element software, and the law of excavation settlement is studied. Based on the vehicle-track coupling dynamics theory, the vehicle-track-subgrade and underpass tunnel coupling fine dynamic model is established, and the tunnel excavation construction is analyzed. The interaction between operation and train operation of existing high-speed railway lines. The main research results are as follows: 1) the large-scale, fine and close engineering model of ballastless track subgrade foundation excavation and vehicle-ballastless track subgrade underpass tunnel coupling dynamics model is established. Based on the abundant constitutive model of geotechnical material of finite element software ABAQUS, the solid model of ballastless track, subgrade and underpass tunnel is established, and the earth excavation and segment installation are simulated by the birth and death element technique. Shield construction process, such as shield tail emptying and grouting at the back of the wall; Based on the wheel-rail dynamics principle, the coupled dynamic model of vehicle-ballastless track subgrade and underpass tunnel is established by the contact attribute of Explicit module penalty function. The settlement law of the existing high iron track structure during shield tunneling is revealed and the influence of different buried depth and excavation radius is considered. Based on the model of ballastless track subgrade and foundation excavation, the settlement law of existing high-speed railway track from shield excavation to different positions of high-speed railway line is studied, and the different tunnel depth is also studied. The settlement law of different excavation diameters is compared and analyzed, and the uneven settlement caused by excavation is evaluated in combination with the existing design code of high-speed railway. The dynamic response of the existing track structure and the underpass tunnel when the high-speed train is excavated to different positions and at different speeds by shield tunneling is analyzed. Based on the model of vehicle-ballastless track subgrade and underpass tunnel the irregularity caused by shield construction is assigned to ballastless track structure. This paper explores the dynamic response of track structure when the train is running at different locations from the existing high-speed railway line, and compares the train operation with different speeds. All vehicle system dynamic indicators are within the safety range. (4) the dynamic response of each structure after the expansion of the excavated seams is studied. In the ABAQUS model, the tie binding contact property is set between the track plate and the mortar layer outside the off-seam area (to simulate the "bond" effect in practice). In this paper, the sinusoidal curve is used to simulate the interlayer seams in the seams area. The dynamic response of each structure layer is analyzed under 0 ~ 15mm seams.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U455.43;U211
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 裴強(qiáng);陶夏新;;軌道交通振動(dòng)對(duì)鄰近建筑物的影響及其評(píng)價(jià)[J];地震工程與工程振動(dòng);2011年04期
2 徐方京;侯學(xué)淵;;盾尾間隙引起地層移動(dòng)的機(jī)理及注漿方法分析[J];地下工程與隧道;1993年03期
3 侯學(xué)淵,廖少明;盾構(gòu)隧道沉降預(yù)估[J];地下工程與隧道;1993年04期
4 李德武,高峰;隧道基底結(jié)構(gòu)列車振動(dòng)現(xiàn)場(chǎng)測(cè)試與分析[J];甘肅科學(xué)學(xué)報(bào);1999年01期
5 劉英城;;盾構(gòu)機(jī)穿越高速鐵路的施工[J];隧道建設(shè);2006年S2期
6 肖廣良;;盾構(gòu)在軟土地層穿越既有鐵路施工技術(shù)[J];隧道建設(shè);2008年03期
7 陳靖;;地鐵盾構(gòu)隧道下穿滬寧城際鐵路的影響分析[J];鐵道勘測(cè)與設(shè)計(jì);2011年02期
8 羅雁云,耿傳智;不同軌道狀態(tài)對(duì)輪軌附加動(dòng)荷載影響[J];鐵道學(xué)報(bào);1999年02期
9 梁波,蔡英;不平順條件下高速鐵路路基的動(dòng)力分析[J];鐵道學(xué)報(bào);1999年02期
10 畢湘利,周順華;列車振動(dòng)荷載對(duì)鄰近深基坑的既有站變形影響[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年12期
相關(guān)博士學(xué)位論文 前1條
1 和振興;板式無(wú)砟軌道交通引起的環(huán)境振動(dòng)研究[D];西南交通大學(xué);2008年
,本文編號(hào):1433448
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1433448.html