波紋鋼腹板組合箱梁橋剪力滯研究
發(fā)布時間:2018-01-16 10:48
本文關(guān)鍵詞:波紋鋼腹板組合箱梁橋剪力滯研究 出處:《中南林業(yè)科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 剪力滯救應(yīng) 波形鋼腹板 大跨徑組合寬箱梁 能量變分法 有限元分析 尺寸參數(shù)
【摘要】:本文以深圳市新安大橋(88m+156m+88m)為工程背景,用能量變分法和有限元分析兩種方法對大跨波紋鋼腹板PC箱梁的剪力滯效應(yīng)進(jìn)行了綜合分析研究。推導(dǎo)了在不同荷載作用下用能量變分法計算剪力滯系數(shù)的公式,認(rèn)為能量變分法是剪應(yīng)力不均勻分布理論求解中較有效的方法,能夠?qū)Υ罂鐝讲y鋼腹板-混凝土組合截面寬箱梁的剪應(yīng)力沿截面的分布進(jìn)行求解。建立了Midas/civil和ANSYS對新安大橋?qū)崢虻挠邢拊P?用有限元分析計算結(jié)果和能量變分法理論求解的結(jié)果進(jìn)行了比較,二者計算結(jié)果基本相近,但有限元計算結(jié)果小于能量變分法求解結(jié)果,在對于大跨徑波形鋼腹板組合截面梁橋中的剪力滯系數(shù)的計算方法中,有限元方法的計算結(jié)果比能量變分法更加嚴(yán)謹(jǐn);在Midas/civil和ANSYS兩種有限元軟件共同分析中,Midas/civil在對實橋分析更快捷,明確,能更好把握結(jié)構(gòu)從施工到完成的整個過程分析,而ANSYS分析中能對結(jié)構(gòu)中的細(xì)部構(gòu)件進(jìn)行更細(xì)致入微的計算;計算得出波形鋼腹板組合截面連續(xù)梁橋在懸臂施工階段和成橋后支座處截面都存在較為明顯的剪力滯效應(yīng)。分析得出大跨徑的波形鋼腹板組合箱梁橋在不同荷載作用下,截面頂、底板都出現(xiàn)了較為明顯的剪力滯效應(yīng),且驗證了大跨徑的波形鋼腹板組合箱梁橋中,最大剪力滯系數(shù)往往出現(xiàn)在截面剪力連接件附近的截面板上;計算得出在跨徑大、截面寬度寬的組合箱梁結(jié)構(gòu)中,沿梁高方向正應(yīng)變主要體現(xiàn)在頂、底板位置,腹板應(yīng)變幾乎為零,所以大跨徑波形鋼腹板組合寬截面不符合“平截面假定”。改變波形鋼腹板組合截面橋不同幾何尺寸參數(shù),分析其對剪應(yīng)力分布規(guī)律的影響,當(dāng)跨徑不變截面寬度增大時,波形鋼腹板組合截面橋的最大剪力滯系數(shù)逐漸增大,而且荷載越大,剪力滯效應(yīng)隨寬跨比的增大而變化得明顯;不同波高使得最大剪力滯系數(shù)的變化趨勢在不同荷載作用下大致一樣,而集中荷載的作用下,波紋鋼板的波高變化往往比均布荷載作用對剪力滯系數(shù)的影響更大。本文的計算分析結(jié)果對于同類橋型設(shè)計有一定的參考意義。
[Abstract]:The background of this paper is 88 m 156m 88m of Xinan Bridge in Shenzhen City. The shear lag effect of PC box girder with long-span corrugated steel webs is studied by means of energy variational method and finite element analysis. The common method of calculating shear lag coefficient by energy variational method under different loads is derived. Style. It is considered that the energy variational method is an effective method to solve the non-uniform distribution of shear stress. The shear stress distribution along the cross-section of large-span corrugated steel web-concrete composite section wide box girder can be solved. The finite element model of Midas/civil and ANSYS for the real bridge of Xin'an Bridge is established. . The results of finite element analysis and energy variational method are compared. The two results are basically similar, but the results of finite element method are smaller than that of energy variational method. In the calculation method of shear lag coefficient of long-span corrugated steel web composite beam bridge, the result of finite element method is more rigorous than that of energy variational method. In the Midas/civil and ANSYS finite element software analysis, Midas / civil analysis of the bridge is faster and clearer. Can better grasp the structure from construction to completion of the whole process of analysis, and ANSYS analysis can be more detailed calculation of the details of the structure; The results show that the shear lag effect is obvious in the cantilever construction stage and at the rear support of the continuous girder bridge with corrugated steel web composite section. The analysis shows that the long-span composite box girder bridge with corrugated steel web plate has different loads. Under the influence. At the top and bottom of the section, the shear lag effect appears obviously, and it is verified that the maximum shear lag coefficient often appears in the section panel near the section shear joint in the long-span corrugated steel web composite box girder bridge. The results show that in the composite box girder structure with large span and wide section width, the positive strain along the beam height is mainly reflected in the top, bottom plate position, and the web strain is almost zero. Therefore, the wide section of long-span corrugated steel web is not in accordance with the "plane section assumption". The influence of different geometric parameters on the shear stress distribution of the bridge is analyzed by changing the geometric parameters of the bridge. When the span width is constant, the maximum shear lag coefficient increases gradually, and the larger the load, the more obvious the shear lag effect changes with the increase of width span ratio. Different wave heights make the variation trend of the maximum shear lag coefficient approximately the same under different loads, but under the action of concentrated load. The variation of wave height of corrugated steel plate is usually greater than that of uniform load on shear lag coefficient.
【學(xué)位授予單位】:中南林業(yè)科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U441;U448.213
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 萬水,湯意,王勁松;波形鋼腹板PC組合箱梁結(jié)構(gòu)特點分析與試驗研究[J];南京理工大學(xué)學(xué)報(自然科學(xué)版);2004年05期
2 徐忠寧;楊新遠(yuǎn);;波形鋼腹板組合梁橋的發(fā)展?fàn)顩r及特點[J];內(nèi)蒙古科技與經(jīng)濟(jì);2010年01期
相關(guān)博士學(xué)位論文 前1條
1 任紅偉;波紋鋼腹板預(yù)應(yīng)力混凝土組合箱梁設(shè)計理論與試驗研究[D];北京交通大學(xué);2011年
,本文編號:1432795
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1432795.html
教材專著