彎曲荷載下鋼—混組合梁腹板穩(wěn)定性試驗研究
本文關(guān)鍵詞:彎曲荷載下鋼—混組合梁腹板穩(wěn)定性試驗研究 出處:《武漢理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 鋼-混組合梁 彎曲荷載 剪力釘 腹板穩(wěn)定性
【摘要】:鋼-混組合梁橋不僅具有受力性能良好、較好的抗震性能、自重輕、施工方便等優(yōu)點,較大的跨越能力是鋼-混組合梁橋另一顯著優(yōu)點。當(dāng)對橋梁跨徑需求較大時,鋼-混組合梁橋是優(yōu)先考慮的橋梁結(jié)構(gòu)形式。隨著鋼-混組合梁橋跨徑的增大,鋼-混組合梁橋的腹板高度也隨之增加,一般的大跨徑鋼-混組合梁橋的高跨比為1/20~1/25。鋼-混組合梁橋中腹板高度的增加,對鋼-混組合梁橋的設(shè)計提出了新的挑戰(zhàn),我國現(xiàn)有的橋梁設(shè)計規(guī)范在一定程度上并不能滿足鋼-混組合梁橋腹板的設(shè)計與驗算要求。鋼-混組合梁橋中腹板的穩(wěn)定性問題歸根結(jié)底還是板件穩(wěn)定性問題,而板件邊界條件的確定是進(jìn)行板件穩(wěn)定性問題研究分析的關(guān)鍵,目前板件穩(wěn)定性分析理論對板件的邊界條件主要采用兩種簡化形式:四邊簡支邊界與四邊嵌固邊界。鋼-混組合梁橋中,混凝土橋面板與鋼主梁之間主要是通過剪力釘進(jìn)行連接;炷翗蛎姘濉⒓袅︶、鋼主梁翼緣對腹板均會產(chǎn)生彈性轉(zhuǎn)動約束作用,鋼-混組合梁橋鋼腹板邊界具有明顯的彈性轉(zhuǎn)動約束特征,實際邊界是介于簡支邊界與嵌固邊界之間。本人所在課題組研究了剪力釘布置方式、結(jié)構(gòu)尺寸、材料參數(shù)等影響因素對組合翼緣彈性轉(zhuǎn)動約束系數(shù)χ的影響,并推導(dǎo)了考慮剪力釘布置方式、結(jié)構(gòu)尺寸、材料參數(shù)等影響因素的組合翼緣彈性轉(zhuǎn)動約束系數(shù)χ的計算公式及鋼-混組合梁腹板臨界屈曲應(yīng)力計算公式,開展了剪切荷載下鋼-混組合梁的腹板屈曲試驗研究工作,采用試驗手段驗證了剪切荷載下上述公式的適用性與正確性。本文在以上研究基礎(chǔ)上完成了彎曲荷載下鋼-混組合梁腹板穩(wěn)定性試驗研究工作,主要完成工作如下:(1)分析國內(nèi)外關(guān)于板件穩(wěn)定性的研究現(xiàn)狀。通過查閱大量國內(nèi)外文獻(xiàn),對國內(nèi)外關(guān)于板件穩(wěn)定性的研究現(xiàn)狀進(jìn)行深入了解,分析現(xiàn)有研究存在的不足之處,說明開展彎曲荷載下鋼-混組合梁腹板穩(wěn)定性試驗研究的重要意義,在本人所屬課題組之前關(guān)于鋼-混組合梁腹板穩(wěn)定性的研究基礎(chǔ)上針對這些不足引出本文的研究主要內(nèi)容與擬解決的關(guān)鍵科學(xué)問題。(2)介紹鋼-混組合梁腹板彎曲屈曲分析理論。詳細(xì)介紹了考慮剪力釘布置方式、結(jié)構(gòu)尺寸、材料參數(shù)等影響因素的組合翼緣彈性轉(zhuǎn)動約束系數(shù)χ的計算公式,在此基礎(chǔ)上介紹了彈性轉(zhuǎn)動約束邊界的鋼-混組合梁腹板彎曲臨界屈曲應(yīng)力的計算公式,為后續(xù)開展彎曲荷載下鋼-混組合梁腹板穩(wěn)定性試驗研究奠定理論基礎(chǔ)。(3)鋼-混組合梁腹板彎曲屈曲有限元數(shù)值分析。采用有限元數(shù)值分析方法,運用ANSYS軟件對鋼-混組合模型試驗梁進(jìn)行建模,對兩點集中荷載下有限元模型的屈曲特性進(jìn)行了分析。獲得了試驗梁有限元模型的跨中豎向位移、腹板平面外位移、應(yīng)力分布、屈曲模態(tài)等有限元分析結(jié)果。通過有限元分析結(jié)果與本文公式計算結(jié)果的對比,驗證本文計算公式的正確性。(4)鋼-混組合梁腹板彎曲屈曲試驗研究。采用試驗手段,對彎曲應(yīng)力作用下鋼-混組合模型試驗梁的彎曲屈曲特性開展了研究。通過試驗結(jié)果與本文公式計算結(jié)果的對比,對本文彎曲臨界屈曲應(yīng)力計算公式的正確性進(jìn)行驗證。試驗還研究了剪力釘布置方式對組合翼緣彈性轉(zhuǎn)動約束系數(shù)χ與腹板彎曲臨界屈曲應(yīng)力的影響規(guī)律,獲得了彎曲應(yīng)力作用下不同剪力釘布置方式的鋼-混組合模型試驗梁的屈曲模態(tài)與彎曲臨界屈曲應(yīng)力試驗結(jié)果。
[Abstract]:The steel-concrete composite beam bridge not only has good mechanical performance, good seismic performance, light weight, the advantages of convenient construction, large span steel concrete composite beam bridge is another significant advantage. When the large span of demand, the steel-concrete composite beam bridge is a bridge structure form is preferred. With the increase of the steel-concrete composite beam bridge, steel-concrete composite beam bridge web height increases, large span steel concrete composite beam bridge general high span ratio is the combination of increased web height of beam bridge of steel mixed 1/20~1/25., steel-concrete composite beam bridge design new the challenge of our country, the existing bridge design specifications do not meet in a certain extent - Requirements for design and calculation of mixed steel composite beam bridge web. The steel-concrete combined girder bridge stability problem after all in the web or sheet and plate to determine the stability of boundary condition is The key problem of the stability analysis of plate, the plate boundary conditions on the stability analysis theory of plate mainly adopts two kinds of simplified forms: simplysupported boundary and fixed boundary edges. The steel-concrete composite beam bridge, between concrete deck and steel girder is mainly through shear nail concrete bridge connection. The panel, shear studs, steel girder flange on the web will produce elastic rotation restraint, steel-concrete composite beam bridge steel webs boundary has obvious elastic constraint characteristics, the actual boundary is between simply supported boundary and fixed boundary. In my research group of the shear studs arrangement, structure size, influence the factors of material parameters influence on flange elastic constraint coefficient Chi, and considering the shear stud layout, structure size, material parameters, effect of combined flange elasticity factors about beam rotation coefficient Beam web buckling stress calculation formula of mixed formula X and steel, the composite beam plate buckling test on mixed shear steel, the test means to verify the applicability and validity of the formula of the shear load. Based on the above research foundation completed the beam web experimental study on stability of mixed steel under bending load, the main work is as follows: (1) analysis on the plate stability research status at home and abroad. Through consulting a large number of domestic and foreign literature, research status on the plate stability at home and abroad to further understand, analysis of deficiencies existing in the current research, that carry out bending load under the steel and concrete significance test on stability of beam webs, in my own research group before basic research on steel-concrete composite girder stability. To solve these problems lead to the The main contents of this paper and the key scientific issues. (2) the concrete composite beam web bending buckling analysis theory of steel was introduced in detail. The shear pin arrangement, structure size, combination of flange elastic factor rotation constraint coefficient Chi calculation formula of material parameters and other factors, on the basis of introduced constraints the boundary elastic rotation of steel-concrete composite beam plate bending calculation formula of critical buckling stress, for further lay a theoretical foundation for experimental study on stability of beam web mix under bending load of steel. (3) steel-concrete composite girder bending buckling finite element numerical analysis using the finite element numerical analysis method, the use of ANSYS the software of the steel-concrete combined beam model test model for two concentrated buckling characteristic finite element model under load is analyzed. The vertical displacement of mid span beam finite element model test, abdominal plate Out of plane displacement, stress distribution, buckling finite element analysis results. Comparing the calculated results with the formula in this paper through the finite element analysis results, the correctness of the calculation formula is verified in this paper. (4) experimental study on the flexural buckling of the beam web. The mixed combination of steel - Test method of bending stress under the action of steel concrete the bending buckling characteristics of test beam combination model was studied. The formula by comparing the calculated results with the test results, to verify the correctness of this bending critical buckling stress formula. Influence of experimental research of shear stud arrangement on the combination of flange and web x elastic rotation restraint coefficient of bending critical buckling stress the obtained bending stress under different shear stud buckling mode arrangement of steel-concrete combined beam model test and bending buckling stress test results.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U446
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉沐宇;陳齊風(fēng);張強(qiáng);;彈性轉(zhuǎn)動邊界約束的組合梁腹板剪切屈曲分析[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2014年01期
2 孔慶凱;許春榮;朱斌;王志誠;魏樂永;;崇啟大橋主橋鋼箱梁高腹板設(shè)計[J];橋梁建設(shè);2012年02期
3 毛佳;江振宇;陳廣南;張為華;;彈性支承上邊界轉(zhuǎn)動約束矩形板屈曲分析[J];工程力學(xué);2010年12期
4 程婕;姚諫;;彎曲應(yīng)力作用下的腹板轉(zhuǎn)動約束剛度研究[J];工程力學(xué);2010年11期
5 金陽;童根樹;;考慮翼緣約束的工字形截面腹板的彈性屈曲[J];浙江大學(xué)學(xué)報(工學(xué)版);2009年10期
6 金陽;童根樹;;楔形工字梁腹板的彈性剪切屈曲分析[J];工程力學(xué);2009年09期
7 蔣麗忠;曾麗娟;孫林林;;鋼-混凝土連續(xù)組合梁腹板局部屈曲分析[J];建筑科學(xué)與工程學(xué)報;2009年03期
8 聶建國;唐亮;;基于彈性扭轉(zhuǎn)約束邊界的波形鋼板整體剪切屈曲分析[J];工程力學(xué);2008年03期
9 童根樹;任濤;;工字梁的抗剪極限承載力[J];土木工程學(xué)報;2006年08期
10 藺軍,顧強(qiáng),董石麟;梁腹板在彎、剪及局壓復(fù)合應(yīng)力作用下的屈曲分析[J];土木工程學(xué)報;2005年07期
相關(guān)博士學(xué)位論文 前2條
1 陳齊風(fēng);大跨徑鋼—混組合梁橋高腹板穩(wěn)定性分析與試驗研究[D];武漢理工大學(xué);2014年
2 任濤;工字梁腹板在局部承壓和剪力作用下的彈性屈曲及極限承載力[D];浙江大學(xué);2005年
,本文編號:1384485
本文鏈接:http://sikaile.net/kejilunwen/daoluqiaoliang/1384485.html