天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 船舶論文 >

船舶管路氣動噪聲數(shù)值模擬及優(yōu)化設計

發(fā)布時間:2019-05-06 08:12
【摘要】:現(xiàn)代艦船內(nèi)部分布著眾多保證船舶正常工作的管路系統(tǒng),這些管路系統(tǒng)在正常工作的同時,也帶來了不容忽略的噪聲問題,對工作在船上的人員造成了困擾。而這其中通風管路由于直接與船上的生活艙室相連通,由此而來的氣動噪聲問題就顯得格外重要。船上的管路形式多樣,包括圓管、方管,直管、彎管以及直角彎管、圓角彎管。由于船舶管路長度長、分布廣且形式復雜的特點,一直以來對船上管路氣動噪聲的預測都是一個難點。本文首先對船上復雜的管路系統(tǒng)的特點進行了歸納,抽象出了幾種船上常見的管路模型;然后應用計算流體力學的方法,使用大型流體仿真軟件Fluent對通氣管路模型內(nèi)部流場進行了瞬態(tài)計算,得到了時域下管壁內(nèi)部的脈動壓力分布,然后將得到了時域結(jié)果導入聲學計算軟件LMS Virtual.Lab Acoustics進行聲學有限元計算,得到管路聲壓云圖及出口監(jiān)測點處的氣動噪聲聲壓級曲線。并對不同的管路模型進行對比分析,得到管路氣動噪聲規(guī)律以及更加優(yōu)化的船舶管路形式,可為船舶艙室噪聲的計算提供通氣管路氣動噪聲數(shù)據(jù)。計算結(jié)果表明,對于船上通氣管路,圓管的氣動噪聲水平要低于方管,因此圓管的氣動噪聲特性要好于方管;圓角彎的氣動噪聲水平要低于直角彎,且隨圓角彎管的彎角半徑增大,氣動噪聲降低。因此船上管路設計應盡可能使氣流的流動均勻,應避免急轉(zhuǎn)彎,盡量采用圓角彎頭代替直角彎頭。降低船舶管道內(nèi)氣動噪聲的最主要措施是限制管道內(nèi)的風速,根據(jù)本文計算,管道內(nèi)風速增大一倍,出口監(jiān)測點處氣動噪聲聲壓級增大14—15分貝。由于根據(jù)相關(guān)規(guī)范,主管內(nèi)的風速一般應不大于10m/s,對噪聲要求嚴格的管路系統(tǒng)中主管道內(nèi)的風速可控制在5m/s左右。
[Abstract]:There are many pipeline systems to ensure the normal operation of ships in modern ships. These piping systems also bring about noise problems which can not be ignored, and cause trouble to the personnel working on the ship. Because of the direct connection between the ventilation pipe and the cabin of the ship, the aerodynamic noise problem becomes more and more important. There are various types of pipeline on board, including round pipe, square pipe, straight pipe, bend pipe and right-angle pipe, and round-fillet pipe. Because of the long length, wide distribution and complicated form of ship pipeline, it is difficult to predict the aerodynamic noise of ship pipeline. In this paper, the characteristics of complex pipeline system on board are summarized, and several common pipeline models on board are abstracted. Then using the method of computational fluid dynamics (CFD) and using the large-scale fluid simulation software Fluent, the transient flow field in the ventilation pipeline model is calculated, and the fluctuating pressure distribution in the pipe wall in the time domain is obtained. Then the time-domain results are imported into the acoustic calculation software LMS Virtual.Lab Acoustics for acoustic finite element calculation, and the sound pressure cloud map of the pipeline and the pressure level curve of aerodynamic noise at the outlet monitoring point are obtained. By comparing and analyzing the different pipeline models, the aerodynamic noise law of the pipeline and the more optimized form of the ship pipeline can be obtained, which can provide the aerodynamic noise data of the ventilated pipeline for the calculation of the cabin noise of the ship. The results show that the aerodynamic noise level of the circular tube is lower than that of the square tube, so the aerodynamic noise characteristic of the circular tube is better than that of the square tube. The aerodynamic noise level of the fillet bend is lower than that of the right corner bend, and the aerodynamic noise decreases with the increase of the fillet radius of the fillet bend. Therefore, the pipeline design of the ship should make the flow of air flow uniform as far as possible, avoid sharp turning, and adopt the round corner elbow instead of the right angle elbow as far as possible. The most important measure to reduce the aerodynamic noise in the ship pipeline is to limit the wind velocity in the pipeline. According to the calculation in this paper, the wind speed in the pipeline is doubled and the sound pressure level of aerodynamic noise at the outlet monitoring point is increased by 14 ~ 15 decibels. According to the relevant specifications, the wind speed in the main pipe should not be more than 10 mm2, and the wind speed in the main pipe can be controlled to about 5m/s when the noise requirement is strict.
【學位授予單位】:大連理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:U661.44;U664.84

【相似文獻】

相關(guān)期刊論文 前10條

1 汪怡平;谷正氣;李偉平;向宇;張洪濤;;汽車氣動噪聲數(shù)值計算分析[J];汽車工程;2009年04期

2 徐俊偉;吳亞鋒;陳耿;;氣動噪聲數(shù)值計算方法的比較與應用[J];噪聲與振動控制;2012年04期

3 王芳;劉秋洪;蔡晉生;;非緊致結(jié)構(gòu)氣動噪聲輻射散射統(tǒng)一積分計算方法[J];航空學報;2013年11期

4 ;氣動噪聲近場預測[J];科技導報;2013年32期

5 楊帆;牛文達;;高速列車集電部的氣動噪聲研究[J];機電產(chǎn)品開發(fā)與創(chuàng)新;2012年04期

6 張軍;黃艷藝;兆文忠;;高速列車氣動噪聲數(shù)值仿真[J];大連交通大學學報;2012年04期

7 賀銀芝;楊志剛;王毅剛;;汽車車身密封對車內(nèi)氣動噪聲影響的機理及試驗研究[J];汽車工程;2012年08期

8 王毅剛;楊超;楊志剛;李啟良;;汽車外表面氣動噪聲特性分析[J];聲學技術(shù);2014年01期

9 蘇強,李偉,陳花玲,黃協(xié)清;電機氣動噪聲治理研究[J];環(huán)境工程;1997年03期

10 陳澤深,王成國;完整的車輛—軌道系統(tǒng)動力學研究是鐵路發(fā)展的迫切需要(2)[J];鐵道機車車輛;2004年04期

相關(guān)會議論文 前9條

1 龔旭;嚴旭;趙志明;萬力銘;葉堅;;某轎車高速氣動噪聲數(shù)值模擬與優(yōu)化[A];2013中國汽車工程學會年會論文集[C];2013年

2 曹志坤;谷波;胡松濤;;基于多目標約束下混合罰函數(shù)的小型風機氣動噪聲仿真及實驗優(yōu)化[A];中國制冷學會2009年學術(shù)年會論文集[C];2009年

3 嚴旭;龔旭;孫慶嶺;譚傳智;葉堅;;某車型空調(diào)通風管道氣動噪聲數(shù)值模擬與優(yōu)化[A];2013中國汽車工程學會年會論文集[C];2013年

4 胡俊偉;丁國良;張春路;;空調(diào)器室內(nèi)機氣動噪聲模擬[A];上海市制冷學會二○○三年學術(shù)年會論文集[C];2003年

5 范士杰;盧炳武;軋浩;孔祥瑞;;車用風扇氣動噪聲的CFD分析與實測[A];2007年APC聯(lián)合學術(shù)年會論文集[C];2007年

6 賴煥新;;輪井/導彈涵流動及其氣動噪聲控制[A];第四屆中國CAE工程分析技術(shù)年會論文集[C];2008年

7 陳宗廣;郭鵬;;圓柱繞流空氣動力噪聲數(shù)值模擬[A];2013中國西部聲學學術(shù)交流會論文集(上)[C];2013年

8 于劍澤;喬鑫;李飛;;汽車后視鏡氣動噪聲數(shù)值分析與結(jié)構(gòu)改進[A];第八屆中國CAE工程分析技術(shù)年會暨2012全國計算機輔助工程(CAE)技術(shù)與應用高級研討會論文集[C];2012年

9 龍雙麗;聶宏;詹家禮;;圓柱繞流氣動噪聲數(shù)值模擬[A];第19屆全國結(jié)構(gòu)工程學術(shù)會議論文集(第Ⅰ冊)[C];2010年

,

本文編號:2470017

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/2470017.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶81482***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com