超大型浮式結(jié)構(gòu)在復(fù)雜環(huán)境載荷作用下的疲勞強(qiáng)度評(píng)估
[Abstract]:The super-large floating structure is a kind of large-scale offshore engineering platform, which can be arranged in the predetermined sea area for aircraft take-off and landing and personnel stationed. It plays an important role in the protection of marine safety and the exploitation of marine resources. The super-large floating structure is usually connected by several modules, the scale of which is more than kilometer, and it will bear complex marine environmental load. The critical joints will bear combined loads, such as bending, torsion and shear, which may lead to serious fatigue problems. At present, the S-N curve method has been widely used in fatigue assessment of ship and ocean engineering structures, but there is no uniform standard in the field of ship and ocean engineering for fatigue damage assessment under complex stress condition. Therefore, in this paper, the multi-axis fatigue estimation of the single-module bracing joint in the form of longitudinal brace of the super-large floating structure is carried out, which provides the basis for the design and construction of the super-large floating structure. It can also be used as a reference for the study of multi-axial fatigue life assessment method for ship and marine engineering structures. The load of the single module in the wave is closely related to the structure form of the super-large floating structure. In this paper, the moment transfer function in the regular wave is calculated, and the influence of the center distance of the lower floating box on the vertical bending moment is analyzed. Then the stress response of brace joint is calculated by commercial finite element software and its amplitude and phase distribution are given to further analyze the multi-axial degree of stress at the joint. The change degree of principal stress direction is determined by the amplitude and phase of stress. Based on the analysis of stress response in regular wave and short-term sea condition, the change degree of principal stress direction is given in this paper. It provides a basis for multiaxial fatigue evaluation. Then, according to the results of multi-axial fatigue test, this paper analyzes and compares the common methods of selecting facing interface under simple multi-axis fatigue criterion, and discusses the effect of proportional and non-proportional stress state on multi-axial fatigue life, according to which the influence of proportional and non-proportional stress state on multiaxial fatigue life is discussed. It provides a basis for selecting multi-axial fatigue criterion for spectral fatigue analysis. Finally, a concrete method of fatigue spectrum analysis using multi-axis fatigue criterion under complex stress condition is established, and the spectrum analysis forms of stress spectrum transformation and common multi-axis fatigue criterion are given. Based on the short-term and long-term prediction, the fatigue damage results of structural brace joints under the main classification society method, the method recommended by the International Welding Society and the multi-axis fatigue spectrum analysis are compared. It is found that, except for a few waves, the direction of principal stress changes little under the unidirectional wave, and the effect of multi-axial effect on the fatigue life of the structure is small. However, considering that the structure will continue to encounter waves in different directions during the life cycle, the direction of principal stress changes greatly, and the multi-axis effect will reduce the fatigue life of the structure. Therefore, it is suggested to take into account the effect of the principal stress change on fatigue life of super-large floating structures under all-direction incoming waves.
【學(xué)位授予單位】:中國(guó)艦船研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U661.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃祥鹿,陳小紅,范菊;錨泊浮式結(jié)構(gòu)波浪上運(yùn)動(dòng)的頻域算法[J];上海交通大學(xué)學(xué)報(bào);2001年10期
2 唐友剛;李嘉文;曹菡;陶海成;李溢涵;;新型海上風(fēng)機(jī)浮式平臺(tái)運(yùn)動(dòng)的頻域分析[J];天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版);2013年10期
3 桑松;李華軍;;深海多體式浮式結(jié)構(gòu)物穩(wěn)性研究中浮態(tài)參數(shù)計(jì)算[J];哈爾濱工程大學(xué)學(xué)報(bào);2007年05期
4 崔維成,吳有生,李潤(rùn)培;超大型海洋浮式結(jié)構(gòu)物動(dòng)力特性研究綜述[J];船舶力學(xué);2001年01期
5 陳寶鋒;聶柱中;沈昌禮;戴秋萍;;海上浮式結(jié)構(gòu)物的模糊運(yùn)動(dòng)響應(yīng)分析初探[J];國(guó)防交通工程與技術(shù);2008年04期
6 顧解忡;;相鄰大型浮式箱形結(jié)構(gòu)物運(yùn)動(dòng)響應(yīng)的數(shù)值模擬(英文)[J];船舶力學(xué);2006年03期
7 桑松;徐學(xué)軍;;深海多體式浮式結(jié)構(gòu)物浮態(tài)求解[J];中國(guó)海洋平臺(tái);2009年05期
8 桑松;徐學(xué)軍;;浮式結(jié)構(gòu)物完整穩(wěn)性優(yōu)化計(jì)算原理[J];上海交通大學(xué)學(xué)報(bào);2009年10期
9 林青;;M法在浮式結(jié)構(gòu)靠船樁簇計(jì)算分析中的應(yīng)用[J];科技風(fēng);2011年10期
10 王建民;Gao R.P.;Pathak M.M.;;超大型浮式結(jié)構(gòu)基于頻域法的流體彈性分析[J];建筑結(jié)構(gòu);2014年07期
相關(guān)會(huì)議論文 前10條
1 翁震平;;綠色超大型浮式結(jié)構(gòu)物研發(fā)方向[A];中國(guó)鋼結(jié)構(gòu)協(xié)會(huì)海洋鋼結(jié)構(gòu)分會(huì)2010年學(xué)術(shù)會(huì)議暨第六屆理事會(huì)第三次會(huì)議論文集[C];2010年
2 桑松;;深海浮式結(jié)構(gòu)物浮態(tài)計(jì)算及關(guān)鍵問(wèn)題研究[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2009年
3 張法富;劉建輝;鐘文軍;;波浪作用下的超大型浮式結(jié)構(gòu)物整體受力研究[A];第十三屆中國(guó)科協(xié)年會(huì)第13分會(huì)場(chǎng)-海洋工程裝備發(fā)展論壇論文集[C];2011年
4 劉應(yīng)中;;超大型浮式結(jié)構(gòu)的水彈性力學(xué)問(wèn)題[A];第十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2002年
5 賴智萌;程小明;田超;張凱;;海洋超大型浮式結(jié)構(gòu)物在不同連接器剛度下的運(yùn)動(dòng)響應(yīng)[A];第十三屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議暨第二十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)論文集——F船舶與海洋工程流體力學(xué)[C];2014年
6 桑松;徐學(xué)軍;;深海多體式浮式結(jié)構(gòu)物穩(wěn)性優(yōu)化計(jì)算[A];第四屆全國(guó)船舶與海洋工程學(xué)術(shù)會(huì)議論文集[C];2009年
7 董慶輝;林海花;彭貴勝;孫強(qiáng);姚云熙;李在鵬;;FDPSO的幾種不同形式海工浮式結(jié)構(gòu)物性能比較[A];第十六屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2013年
8 鐘文軍;寇雨豐;楊立軍;劉建輝;;深海超大型浮式結(jié)構(gòu)物消浪室性能試驗(yàn)研究[A];第十五屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上)[C];2011年
9 劉應(yīng)中;崔維成;吳有生;;VLFS的水彈性力學(xué)問(wèn)題[A];第十七屆全國(guó)水動(dòng)力學(xué)研討會(huì)暨第六屆全國(guó)水動(dòng)力學(xué)學(xué)術(shù)會(huì)議文集[C];2003年
10 上官麗紅;黃維平;;1500m Truss Spar方案設(shè)計(jì)及強(qiáng)度與系統(tǒng)穩(wěn)定性分析[A];第十四屆中國(guó)海洋(岸)工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 李嘉文;新型海上風(fēng)機(jī)浮式基礎(chǔ)設(shè)計(jì)與風(fēng)機(jī)系統(tǒng)耦合動(dòng)力分析[D];天津大學(xué);2014年
2 鄭艷娜;波浪與浮式結(jié)構(gòu)物相互作用的研究[D];大連理工大學(xué);2006年
3 石強(qiáng);分層流體中浮式結(jié)構(gòu)物水動(dòng)力特性研究[D];上海交通大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 陳超;超大型浮式結(jié)構(gòu)在復(fù)雜環(huán)境載荷作用下的疲勞強(qiáng)度評(píng)估[D];中國(guó)艦船研究院;2016年
2 陳友聲;浮式結(jié)構(gòu)物的仿真與水動(dòng)力參數(shù)識(shí)別方法研究[D];昆明理工大學(xué);2010年
3 汪伍洋;多體超大型浮式結(jié)構(gòu)物連接器的設(shè)計(jì)及載荷的初步分析[D];江蘇科技大學(xué);2014年
4 李溢涵;海上風(fēng)機(jī)Spar型浮式基礎(chǔ)的運(yùn)動(dòng)特性研究[D];天津大學(xué);2012年
5 曹菡;海上風(fēng)機(jī)半潛型浮式基礎(chǔ)水動(dòng)力性能研究[D];天津大學(xué);2012年
6 張丹;海上超大型浮式基地的總體設(shè)計(jì)方案初步研究[D];江蘇科技大學(xué);2014年
7 袁宇波;船舶碰撞載荷對(duì)超大型浮式結(jié)構(gòu)物連接器載荷的影響[D];江蘇科技大學(xué);2012年
8 陳矗立;深海浮式結(jié)構(gòu)物及其錨泊系統(tǒng)的動(dòng)力特性研究[D];上海交通大學(xué);2007年
9 馬鈺;單柱式浮式風(fēng)機(jī)動(dòng)力性能機(jī)理研究[D];上海交通大學(xué);2014年
10 張波;超大型浮式結(jié)構(gòu)物動(dòng)力響應(yīng)與風(fēng)險(xiǎn)評(píng)估研究[D];江蘇科技大學(xué);2013年
,本文編號(hào):2449812
本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/2449812.html