船舶余熱在北極通航船舶關(guān)鍵艙室溫控中的模擬研究
本文選題:北極通航 + 余熱利用��; 參考:《大連海事大學(xué)》2016年碩士論文
【摘要】:進(jìn)入21世紀(jì)以來,全球氣候變暖,北冰洋海冰迅速消融,同時(shí)一條橫跨亞歐大陸全新的海上生命線隨之應(yīng)運(yùn)而生。北極東北航線的開通為處在低迷期的航運(yùn)業(yè)注入了新的活力,其中所蘊(yùn)藏著的巨大經(jīng)濟(jì)潛力已然成為全世界關(guān)注的焦點(diǎn)之一。北極通航同時(shí)也面臨著傳統(tǒng)航線從未遇到過的挑戰(zhàn)。其中,通航船舶的錨機(jī)、絞纜機(jī)、液壓舵機(jī)等部分關(guān)鍵甲板機(jī)械的液壓油受制于極地的低溫,時(shí)常會(huì)出現(xiàn)由于流動(dòng)性變差而導(dǎo)致啟動(dòng)、運(yùn)行障礙等問題,影響了船舶的日常營運(yùn)、作業(yè),以及船員的生活;另外,船舶的高溫淡水余熱中很大一部分都作為廢熱而未被利用,造成了不必要的能源污染和浪費(fèi)。因此,將船舶高溫淡水的廢熱和蒸汽的余熱,應(yīng)用于北極通航船舶甲板機(jī)械液壓油控溫的研究,是當(dāng)前一個(gè)重要而具有現(xiàn)實(shí)意義的課題。文章首先介紹了船舶主柴油機(jī)冷卻水系統(tǒng)的發(fā)展歷程和甲板機(jī)械液壓系統(tǒng)的傳動(dòng)機(jī)理,論述處在低溫環(huán)境中液壓油凝點(diǎn)、粘度等因素變化給甲板機(jī)械帶來的影響,并基于此提出設(shè)計(jì)一套利用船舶高溫淡水及蒸汽余熱加溫的系統(tǒng),大致方案為:在通航船舶舵機(jī)房及左右艉尖艙分別加裝板式熱交換器,利用缸套水從主柴油機(jī)帶出的部分廢熱,通過自然對流的散熱形式,間接實(shí)現(xiàn)對液壓油柜的加熱和控溫;同時(shí),在船舶高溫淡水系統(tǒng)中加裝一個(gè)擁有更好換熱效率的波節(jié)管式熱交換器,利用蒸汽余熱實(shí)現(xiàn)對高溫淡水進(jìn)行加熱,保證輸送的熱介質(zhì)具有恒定的溫度值。然后,文章利用傳熱學(xué)、流體力學(xué)中相關(guān)公式,建立理論計(jì)算模型來驗(yàn)證控溫方案在熱量傳遞方面的可行性,核算高溫淡水傳輸管系和待加熱艙室壁面保溫材料的厚度,并進(jìn)行相應(yīng)熱交換器的選型計(jì)算和公式推導(dǎo)。最后,文章通過采集實(shí)船數(shù)據(jù)對上述計(jì)算過程進(jìn)行案例分析。結(jié)果表明,上述設(shè)計(jì)方案從理論上來說是可行的。
[Abstract]:Since the beginning of the 21st century, the global climate has become warmer, the Arctic sea ice has melted rapidly, and a new sea lifeline across the Eurasian continent has emerged as the times require. The opening of the Arctic northeast route has injected new vitality into the shipping industry in the downturn, in which the huge economic potential has become one of the focuses of the world. Arctic navigation also faces challenges that have never been encountered on traditional routes. Among them, the hydraulic oil of some key deck machinery such as anchor, winch and hydraulic steering gear of navigable ships is subject to the low temperature of the polar region, and often causes problems such as starting up and running obstacles due to poor mobility. It affects the daily operation, operation and the life of the crew. In addition, a large part of the ship's high temperature fresh water waste heat is not used as waste heat, resulting in unnecessary energy pollution and waste. Therefore, it is an important and practical subject to apply the waste heat of high temperature fresh water and the residual heat of steam to the study of the temperature control of mechanical hydraulic oil on the deck of Arctic navigable ship. This paper first introduces the development course of cooling water system of marine main diesel engine and the transmission mechanism of hydraulic system of deck machinery, and discusses the influence of the change of hydraulic oil freezing point and viscosity on deck machinery in low temperature environment. Based on this, a system is designed to use high temperature fresh water and steam heat to heat the ship. The scheme is as follows: the plate heat exchanger is installed in the ship steering gear room and the left and right stern peak cabin, respectively. Using part of waste heat brought out of main diesel engine by cylinder liner water, the heating and temperature control of hydraulic oil tank can be indirectly realized through natural convection heat dissipation form; at the same time, A corrugated tube heat exchanger with better heat transfer efficiency is added to the ship's high temperature fresh water system, and the heat transfer medium is guaranteed to have a constant temperature value by using the residual heat of steam to heat the high temperature fresh water. Then, by using the relevant formulas in heat transfer and hydrodynamics, the paper establishes a theoretical calculation model to verify the feasibility of the temperature control scheme in terms of heat transfer, and calculates the thickness of the heat preservation material on the wall of the high-temperature fresh water transfer pipe system and the room to be heated. The selection calculation and formula derivation of the heat exchanger are carried out. Finally, the paper carries on the case analysis to the above calculation process by collecting the real ship data. The results show that the above design scheme is feasible in theory.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U664
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 屠宏偉,蔡云高,施建榮;“電-氣”式主柴油機(jī)遙控系統(tǒng)中純時(shí)延問題[J];造船技術(shù);2000年06期
2 肖健梅 ,王錫淮 ,鮑敏中;神經(jīng)網(wǎng)絡(luò)在船舶主柴油機(jī)建模中的應(yīng)用[J];船舶工程;2001年06期
3 胡啟祥;船舶主柴油機(jī)凸輪軸斷裂的分析與處理[J];天津航海;2004年04期
4 李舜杰;劉東風(fēng);馬天帥;;艦船主柴油機(jī)缸內(nèi)過程監(jiān)測與診斷技術(shù)研究[J];柴油機(jī);2011年03期
5 郭宏強(qiáng);劉四方;陳超;;船舶主柴油機(jī)在線故障診斷系統(tǒng)研究[J];微計(jì)算機(jī)信息;2012年06期
6 劉開祥;;船舶低速大功率主柴油機(jī)遙控裝置研制成功[J];交通部上海船舶運(yùn)輸科學(xué)研究所學(xué)報(bào);1982年01期
7 吳澤亮;船舶主柴油機(jī)主動(dòng)防振支承裝置[J];船舶;1991年04期
8 ;船舶主柴油機(jī)自動(dòng)控制和調(diào)距槳推進(jìn)調(diào)查結(jié)果[J];船舶;1994年03期
9 王康恒,梁楨忠;B&W8L55GFCAP200型主柴油機(jī)的倒車失靈[J];青島遠(yuǎn)洋船員學(xué)院學(xué)報(bào);1996年02期
10 屠宏偉,蔡云高,施建榮;氣動(dòng)傳輸純時(shí)延對主柴油機(jī)電—?dú)膺b控方式的影響[J];中國修船;1999年05期
相關(guān)會(huì)議論文 前4條
1 溫宇欽;彭水生;吳恒;張惠澤;;船舶主柴油機(jī)滑油系統(tǒng)建模與仿真[A];中國航海學(xué)會(huì)船舶機(jī)電專業(yè)委員會(huì)2000年度學(xué)術(shù)報(bào)告會(huì)論文集[C];2000年
2 虞金霞;胡以懷;胡先富;;大型船舶主柴油機(jī)仿真系統(tǒng)的動(dòng)態(tài)實(shí)現(xiàn)[A];2000年上海市系統(tǒng)仿真學(xué)會(huì)學(xué)術(shù)年會(huì)論文專輯[C];2000年
3 褚建新;顧偉;鄭士君;;船舶主柴油機(jī)電子調(diào)速器轉(zhuǎn)速調(diào)節(jié)原理仿真[A];上海海事大學(xué)與波蘭格丁尼亞海事大學(xué)校際合作20周年科技論文集[C];2004年
4 尹自斌;李品芳;;船舶主柴油機(jī)NO_x排放實(shí)船測試方案[A];2010年船舶防污染學(xué)術(shù)年會(huì)論文集[C];2010年
相關(guān)碩士學(xué)位論文 前3條
1 謝天;船舶余熱在北極通航船舶關(guān)鍵艙室溫控中的模擬研究[D];大連海事大學(xué);2016年
2 徐勝龍;“育鯤”輪主柴油機(jī)虛擬現(xiàn)實(shí)技術(shù)研究[D];大連海事大學(xué);2010年
3 李國伍;船舶四沖程主柴油機(jī)增壓系統(tǒng)運(yùn)行規(guī)律的研究[D];集美大學(xué);2007年
,本文編號:1990969
本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/1990969.html