溫差能驅(qū)動水下滑翔機(jī)能耗分析與優(yōu)化
本文選題:溫差能驅(qū)動水下滑翔機(jī) + 能耗; 參考:《天津大學(xué)》2016年碩士論文
【摘要】:溫差能是海洋中儲量巨大且比較穩(wěn)定的可再生能源,溫差能驅(qū)動水下滑翔機(jī)是利用海洋溫差能驅(qū)動自身運動的海洋環(huán)境監(jiān)測平臺。論文從能耗的角度對溫差能水下滑翔機(jī)進(jìn)行系統(tǒng)研究,基于能耗對滑翔機(jī)進(jìn)行優(yōu)化設(shè)計,在發(fā)揮滑翔機(jī)本身巡航范圍廣、在位工作時間長、低成本、易操作和高自治性優(yōu)點的基礎(chǔ)上,進(jìn)一步提高其能量利用效率,使低能耗長航程的運行成為可能。針對溫差能驅(qū)動水下滑翔機(jī)的能耗問題,進(jìn)行了如下研究工作。首先,對現(xiàn)有的溫差能驅(qū)動水下滑翔機(jī)的能耗結(jié)構(gòu)進(jìn)行了整體分析。其次,基于上述能耗的分析對滑翔機(jī)關(guān)鍵單元進(jìn)行能效優(yōu)化,以能量利用率和續(xù)航能力為評價指標(biāo),以路徑最短、能耗最小為約束進(jìn)行了路徑規(guī)劃,并對浮力驅(qū)動系統(tǒng)進(jìn)行分析與改進(jìn);基于能耗最優(yōu)對滑翔機(jī)的姿態(tài)調(diào)節(jié)系統(tǒng)進(jìn)行了改進(jìn)與穩(wěn)定性分析,最后通過一系列的水域試驗,對溫差能滑翔機(jī)的能耗進(jìn)行了預(yù)測和驗證。本文主要研究成果包括:(1)從溫差能水下滑翔機(jī)工作過程入手,將滑翔機(jī)的能耗單元分為與時間有關(guān)和與時間無關(guān)的兩大類,根據(jù)各類能耗特點,分別建立其能耗模型;在此基礎(chǔ)上,通過對穩(wěn)態(tài)滑翔影響因素的分析,建立了溫差能水下滑翔機(jī)的熱能需求模型。(2)以續(xù)航能力和能量利用率為能耗評價指標(biāo)建立數(shù)學(xué)模型,分析主要影響因素并給出優(yōu)化策略;針對能耗較大的浮力驅(qū)動系統(tǒng)進(jìn)行改進(jìn)。為減小定航程的能耗,在起航點和目標(biāo)點間分別對二維空間(縱垂面)和三維空間進(jìn)行了路徑規(guī)劃,提出了變深度變航向滑翔時總能耗的計算方法;基于蟻群算法理論,從生物進(jìn)化的角度對滑翔機(jī)的路徑進(jìn)行了優(yōu)化。(3)基于能耗最優(yōu)對滑翔機(jī)的姿態(tài)調(diào)節(jié)系統(tǒng)進(jìn)行了改進(jìn)與穩(wěn)定性分析。(4)進(jìn)行海試試驗,測試滑翔機(jī)在路徑規(guī)劃的下自適應(yīng)航行性能;將建立的能耗理論模型應(yīng)用于在滑翔機(jī)的長航程能耗測試,預(yù)測誤差在10%以內(nèi)。
[Abstract]:Temperature difference energy is a renewable energy source with huge reserves and relatively stable in the ocean. Underwater glider driven by temperature difference energy is a marine environment monitoring platform which uses ocean temperature difference energy to drive its own motion. From the angle of energy consumption, this paper makes a systematic study on the thermal differential energy underwater glider, and optimizes the design of the glider based on the energy consumption. The glider itself has a wide range of cruising, long working time and low cost. Based on the advantages of easy operation and high autonomy, the energy utilization efficiency is further improved, which makes the operation of low energy consumption and long voyage possible. The energy consumption of underwater glider driven by temperature difference energy is studied as follows. Firstly, the energy consumption structure of the existing underwater glider driven by temperature difference energy is analyzed as a whole. Secondly, based on the analysis of the energy consumption mentioned above, the energy efficiency of the key units of the glider is optimized. The energy utilization ratio and the ability of endurance are taken as the evaluation indexes, the shortest path and the minimum energy consumption are taken as the constraints for the path planning. Based on the analysis and improvement of the buoyancy drive system, the attitude control system of the glider is improved and its stability is analyzed based on the optimal energy consumption. Finally, through a series of water experiments, the energy consumption of the glider is predicted and verified. The main research results in this paper include: (1) starting with the working process of the thermal differential energy underwater glider, the energy consumption unit of the glider is divided into two categories, which are time-dependent and time-independent. According to the characteristics of various kinds of energy consumption, the energy consumption models are established respectively. On this basis, through the analysis of the influence factors of steady gliding, the thermal energy requirement model of thermal differential energy underwater glider is established. The main influencing factors are analyzed and the optimization strategy is given, and the buoyancy drive system with high energy consumption is improved. In order to reduce the energy consumption of fixed range, the path planning of two-dimensional space (vertical plane) and three-dimensional space is carried out between the starting point and the target point, and the calculation method of total energy consumption for gliding with variable depth and course is proposed, based on ant colony algorithm theory, In this paper, the glider's path is optimized from the angle of biological evolution. (3) based on the optimization of energy consumption, the glider's attitude control system is improved and its stability is analyzed. 4) the glider's adaptive navigation performance under path planning is tested. The established energy consumption theory model is applied to the long range energy consumption test of glider, and the prediction error is less than 10%.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U674.941
【相似文獻(xiàn)】
相關(guān)期刊論文 前9條
1 ;自然溫差能源[J];江西煤炭科技;2007年01期
2 ;繼美日之后我國成第三個獨立掌握溫差能發(fā)電技術(shù)國家[J];中國科技信息;2013年03期
3 王迅;李赫;谷琳;;海水溫差能發(fā)電的經(jīng)濟(jì)和環(huán)保效益[J];海洋科學(xué);2008年11期
4 王錳;王兵振;張巍;段云棋;;溫差能供電的海洋觀測設(shè)備蓄能及發(fā)電系統(tǒng)設(shè)計與試驗研究[J];海洋技術(shù)學(xué)報;2014年02期
5 蔣愛華 ,梅熾;水庫溫差能在制冷空調(diào)中的利用研究[J];暖通空調(diào);2004年03期
6 王迅;谷琳;李赫;;海水溫差能發(fā)電系統(tǒng)兩種循環(huán)方式的比較研究[J];海洋技術(shù);2006年02期
7 李桂香;全球海水溫差能的開發(fā)利用大有可為[J];海洋信息;1998年02期
8 孔巧玲;馬捷;;溫差能驅(qū)動的水下滑翔機(jī)工作過程數(shù)值模擬[J];武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版);2011年02期
9 ;洋流也可用來發(fā)電[J];流體傳動與控制;2008年03期
相關(guān)重要報紙文章 前8條
1 孫明河;陸地溫差能制造與利用潛力巨大[N];科技日報;2008年
2 國家海洋技術(shù)中心主任 羅續(xù)業(yè);我國溫差能開發(fā)利用技術(shù)研發(fā)亟待突破[N];中國海洋報;2010年
3 記者 林小春;新型偽裝皮溫差能變色[N];新華每日電訊;2014年
4 本報記者 姚蓉;晝夜溫差[N];中國花卉報;2009年
5 邢國遠(yuǎn);自然溫差也是能源[N];北京科技報;2002年
6 竇光宇;正在被認(rèn)識的自然溫差能源[N];中國煤炭報;2005年
7 國家電監(jiān)會 魏青山 中國社科院研究生院 王成仁;溫差能:日美發(fā)電技術(shù)走在前列[N];中國海洋報;2010年
8 魏衍亮;海洋機(jī)器人專利技術(shù)管窺[N];中國知識產(chǎn)權(quán)報;2006年
相關(guān)碩士學(xué)位論文 前8條
1 李超;溫差能驅(qū)動水下滑翔機(jī)能耗分析與優(yōu)化[D];天津大學(xué);2016年
2 李赫;兩種混合式海水溫差能發(fā)電系統(tǒng)的研究與對比分析[D];天津大學(xué);2006年
3 侯圣智;溫差能驅(qū)動自治式水下機(jī)器人動力裝置工作機(jī)理的研究[D];天津大學(xué);2004年
4 任龍飛;水下熱滑翔機(jī)在弱溫差和逆溫差下的性能研究[D];上海交通大學(xué);2011年
5 王延輝;溫差能驅(qū)動的水下監(jiān)測平臺性能分析與試驗研究[D];天津大學(xué);2004年
6 張大濤;溫差能驅(qū)動的水下監(jiān)測平臺系統(tǒng)設(shè)計與實驗研究[D];天津大學(xué);2006年
7 朱凱;晝夜溫差對設(shè)施番茄光合特性及抗氧化酶活性的影響[D];南京信息工程大學(xué);2014年
8 何志綱;溫差能水下滑翔機(jī)中性殼體與驅(qū)動裝置研究[D];天津大學(xué);2013年
,本文編號:1783007
本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/1783007.html