天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 船舶論文 >

基于RKGM-AR模型的船舶柴油機(jī)熱力參數(shù)趨勢(shì)預(yù)測(cè)研究

發(fā)布時(shí)間:2018-02-28 15:32

  本文關(guān)鍵詞: 船舶柴油機(jī) 灰色關(guān)聯(lián)分析 組合預(yù)測(cè) 排氣溫度 預(yù)警 出處:《大連海事大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:船舶柴油機(jī)作為船舶的“心臟”,其健康狀態(tài)不僅會(huì)影響航行安全,還會(huì)影響船舶公司的成本和收益。為了解決船舶柴油機(jī)在健康維護(hù)和管理過程中出現(xiàn)的欠維修和過維修問題,現(xiàn)在柴油機(jī)的維修方式已由定時(shí)維修向故障預(yù)測(cè)與健康管理方式轉(zhuǎn)變。而柴油機(jī)熱力參數(shù)的趨勢(shì)預(yù)測(cè)分析為這一轉(zhuǎn)變提供了技術(shù)支持,實(shí)現(xiàn)了對(duì)柴油機(jī)的故障狀態(tài)進(jìn)行預(yù)報(bào)。 本文以某實(shí)習(xí)船主機(jī)1號(hào)氣缸排氣溫度為主要預(yù)測(cè)對(duì)象,提出一種組合預(yù)測(cè)模型對(duì)其進(jìn)行趨勢(shì)預(yù)測(cè)分析,以實(shí)現(xiàn)對(duì)柴油機(jī)進(jìn)行故障預(yù)報(bào)。 首先,對(duì)柴油機(jī)常規(guī)的熱力參數(shù)進(jìn)行分析研究,闡述了灰色關(guān)聯(lián)分析方法的用途和計(jì)算原理,并采用灰色關(guān)聯(lián)分析法對(duì)柴油機(jī)典型熱力參數(shù)進(jìn)行聚類分析,得到排氣溫度的關(guān)聯(lián)參數(shù)。 其次,分析幾種常用預(yù)測(cè)方法的優(yōu)劣,提出組合預(yù)測(cè)模型是將來的發(fā)展趨勢(shì),并建立經(jīng)四階龍格庫(kù)塔法改進(jìn)的灰預(yù)測(cè)模型與時(shí)間序列AR模型相結(jié)合的組合預(yù)測(cè)模型,分別發(fā)揮了上述兩種預(yù)測(cè)模型的優(yōu)勢(shì)。 再次,通過對(duì)排氣溫度的報(bào)警限值和預(yù)警等級(jí)界定的計(jì)算方法進(jìn)行研究,實(shí)現(xiàn)了預(yù)警功能,并以排氣溫度作為主序列,各缸平均排氣溫度、掃氣溫度、主軸承出口滑油溫度、氣缸冷卻水出口溫度作為輔序列,分別選擇柴油機(jī)排氣溫度在平穩(wěn)變化和上升變化時(shí)上述五個(gè)參數(shù)的樣本數(shù)據(jù),采用聯(lián)合預(yù)測(cè)的方法對(duì)排氣溫度進(jìn)行趨勢(shì)預(yù)測(cè)分析。 最后,將組合預(yù)測(cè)模型應(yīng)用于實(shí)船,并將實(shí)船排氣溫度的預(yù)測(cè)值與實(shí)測(cè)值進(jìn)行比較和誤差分析,以驗(yàn)證預(yù)測(cè)模型的有效性。
[Abstract]:As the heart of the ship, the health status of the marine diesel engine will not only affect the safety of navigation, but also the cost and income of the shipping company, in order to solve the problem of undermaintenance and overmaintenance of the marine diesel engine in the process of health maintenance and management. Now the maintenance mode of diesel engine has been changed from regular maintenance to fault prediction and health management, and the trend prediction analysis of diesel engine thermal parameters provides technical support for this change and realizes the prediction of diesel engine fault state. In this paper, the exhaust temperature of the main engine No. 1 of a practical ship is taken as the main prediction object, and a combined forecasting model is put forward to forecast the trend of the engine in order to realize the fault prediction of the diesel engine. Firstly, the conventional thermodynamic parameters of diesel engine are analyzed, the application and calculation principle of grey correlation analysis method are expounded, and the typical thermodynamic parameters of diesel engine are analyzed by cluster analysis. Correlation parameters of exhaust temperature are obtained. Secondly, the advantages and disadvantages of several commonly used forecasting methods are analyzed, and the combined forecasting model is proposed as the development trend in the future, and the combined prediction model which combines the grey prediction model with the AR model of time series improved by the fourth order Runge-Kutta method is established. The advantages of the above two prediction models are brought into play respectively. Thirdly, by studying the alarm limit value of exhaust temperature and the calculation method of warning grade, the function of early warning is realized, and the exhaust temperature is taken as the main sequence, the average exhaust temperature of each cylinder, the scavenging temperature, the oil temperature at the outlet of the main bearing, and the oil temperature at the outlet of the main bearing. The outlet temperature of cylinder cooling water is taken as the auxiliary sequence, and the sample data of the five parameters mentioned above are selected respectively when the exhaust temperature of diesel engine changes smoothly and rising, and the trend of exhaust temperature is predicted and analyzed by using the method of joint prediction. Finally, the combined prediction model is applied to the real ship, and the prediction value of the exhaust temperature of the ship is compared with the measured value and the error analysis is carried out to verify the validity of the prediction model.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U664.121

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曲曉慧,喬新勇,陳玫,安鋼;基于灰色關(guān)聯(lián)分析的柴油機(jī)狀況評(píng)估[J];兵工學(xué)報(bào);2005年04期

2 吳蒙華;雪金海;夏法鋒;劉蘭波;;用AR模型預(yù)測(cè)Ni-TiN復(fù)合鍍層中納米TiN粒子復(fù)合量[J];稀有金屬材料與工程;2010年S1期

3 張鵬;張躍文;孫培廷;;遠(yuǎn)洋船舶機(jī)艙數(shù)據(jù)增量傳輸?shù)膶?shí)現(xiàn)[J];大連海事大學(xué)學(xué)報(bào);2012年02期

4 王興元;趙敏;樊印海;;船舶電力負(fù)荷預(yù)測(cè)混沌時(shí)間序列分析法[J];大連理工大學(xué)學(xué)報(bào);2010年01期

5 彭宇;劉大同;彭喜元;;故障預(yù)測(cè)與健康管理技術(shù)綜述[J];電子測(cè)量與儀器學(xué)報(bào);2010年01期

6 ;A Diagnosis Method of Vibration Fault of a Steam Turbine Based on Information Entropy and Grey Correlation Analysis[J];International Journal of Plant Engineering and Management;2009年04期

7 李力爭(zhēng);李淑民;張曉郁;趙立娜;;灰色系統(tǒng)在大氣環(huán)境質(zhì)量評(píng)價(jià)及變化趨勢(shì)研究中的應(yīng)用[J];環(huán)境科學(xué)與管理;2013年01期

8 余永華;楊建國(guó);;船舶柴油機(jī)監(jiān)測(cè)診斷技術(shù)研究及其應(yīng)用[J];柴油機(jī);2013年02期

9 于廣濱;丁剛;姚威;黃龍;;基于支持過程向量機(jī)的航空發(fā)動(dòng)機(jī)排氣溫度預(yù)測(cè)[J];電機(jī)與控制學(xué)報(bào);2013年08期

10 周根明;唐曉霞;郭霆;周少華;;基于AHP方法的船舶柴油機(jī)健康狀態(tài)評(píng)估[J];柴油機(jī);2013年06期

相關(guān)博士學(xué)位論文 前1條

1 唐東明;聚類分析及其應(yīng)用研究[D];電子科技大學(xué);2010年

,

本文編號(hào):1547908

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/1547908.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶aaf14***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com