細(xì)長體出水動力學(xué)的實驗研究及數(shù)值模擬
本文關(guān)鍵詞: 高速航行體 出水 超空泡 自由面 大攻角 數(shù)值模擬 出處:《浙江理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:超空泡減阻技術(shù)軍民兩用前景廣闊,雖然我國近幾年來在超空泡減阻技術(shù)方面開展了大量的研究,也取得了大量的成果,但是與西方發(fā)達(dá)國家尤其是與美國和英國相比,我國在超空泡以及空蝕方面的研究方法和研究進(jìn)展都未達(dá)到國際先進(jìn)水平,在高速航行體出水水動力學(xué)特性和機理方面的研究基本上還是處于初級階段,取得的成果也相對較少,所以無論是在數(shù)值計算還是在試驗研究方面都有待于我們進(jìn)一步深入。 本文的工作目的是:通過實驗和數(shù)值計算的方法研究高速航行體出水時壁面在水中形成的自然空泡的生長和潰滅機理以及航行體對自由液面的擾動規(guī)律,主要的工作包括:(1)根據(jù)本文研究工作的需要,自主設(shè)計搭建了一套安全可靠地高速航行體出水的實驗研究系統(tǒng),利用高速攝影系統(tǒng)拍攝和觀測不同模型以不同攻角出水時細(xì)長體周圍的空化現(xiàn)象以及流場形態(tài),利用計算機輔助軟件整理分析出有價值的實驗數(shù)據(jù)。(2)通過商業(yè)軟件FLUENT對實驗中細(xì)長體以不同攻角和不同速度出水工況進(jìn)行數(shù)值模擬,計算結(jié)果與實驗數(shù)據(jù)進(jìn)行對比驗證。取得的一些研究成果如下:(1)由于流體的粘性作用以及細(xì)長體壁面與局部空泡發(fā)生碰撞,造成細(xì)長體出水速度振蕩式下降。(2)細(xì)長體隨著隨時間不斷的露出水面時,液體對壁面的粘性阻力開始下降,細(xì)長體壁面所產(chǎn)生的空泡在自由液面附近開始潰滅,造成細(xì)長體的浮力和附加質(zhì)量力都迅速下降,導(dǎo)致細(xì)長體出水速度在完全出水時刻有一個突增,,隨后繼續(xù)震蕩下降。(3)隨著細(xì)長體速度的增大細(xì)長體壁面逐步產(chǎn)生超空泡,并且細(xì)長體的頭部和尾部極易產(chǎn)生局部空泡,頭部超空泡的閉合以及潰滅規(guī)律與空泡閉合經(jīng)驗?zāi)P拖喾。?)頭型尖銳的細(xì)長體對自由液面隆起程度影響較小,而相對平鈍的尾部對自由液面隆起程度影響較大,并且液面的隆起時間發(fā)生較早。(5)隨著細(xì)長體的速度和本身尺寸的增大對自由液面造成的擠壓和撞擊作用加劇,“噴濺”現(xiàn)象也就越明顯并且對整個流場影響范圍擴大。(6)隨著細(xì)長體出水攻角的增大,細(xì)長體的迎風(fēng)面與背風(fēng)面兩側(cè)的自由液面隆起程度是不對稱的,細(xì)長體迎風(fēng)面的液面隆起較為陡立并且影響范圍較小,而背風(fēng)面的液面隆起較為平緩并且影響范圍較大。(7)通過數(shù)值模擬計算航行體的長徑比,出水速度,以及出水攻角對自由液面的擾動與實驗結(jié)果吻合度較大。
[Abstract]:Super cavitation drag reduction technology has a broad prospect for both military and civil use. Although China has carried out a lot of research in the field of supercavitation drag reduction technology in recent years and achieved a great deal of results, it is compared with western developed countries, especially the United States and Britain. The research methods and research progress of supercavitation and cavitation erosion in China are not up to the international advanced level, and the research on the hydrodynamic characteristics and mechanism of high-speed navigation body is still in the primary stage. The results obtained are also relatively few, so we need to further study both numerical calculation and experimental research. The purpose of this paper is to study the growth and collapse mechanism of the wall cavitation formed in the water and the disturbance law of the free liquid surface by the method of experiment and numerical calculation. The main work includes: (1) according to the needs of the research work in this paper, a set of experimental research system for safe and reliable effluent from high-speed navigation body was designed and built independently. The cavitation phenomena around the slender body and the shape of the flow field around the slender body with different angles of attack were recorded and observed by high-speed photography system. Computer aided software is used to analyze valuable experimental data. (2) numerical simulation of slender body with different attack angle and different velocity is carried out by commercial software FLUENT. Some of the results obtained are as follows: 1) due to the viscous effect of the fluid and the collision between the slender wall and the local cavitation, As the slender body emerges over time, the viscous resistance of the liquid to the wall begins to decrease, and the cavitation produced by the slender wall begins to collapse near the free surface. The buoyancy and the additional mass force of the slender body decrease rapidly, which results in a sudden increase in the outlet velocity of the slender body at the time of the complete effluent, and then continues to oscillate and decrease. 3) with the increase of the velocity of the slender body, the supercavitation is gradually produced on the wall of the slender body. It is easy to produce local cavitation in the head and tail of the slender body. The closure and collapse of the supercavitation in the head are consistent with the empirical model of cavitation closure. 4) the sharp slender body of the head has little effect on the free surface uplift. The relatively flat tail has a greater effect on the free surface uplift. And the uplift of the liquid surface occurred earlier. 5) with the increase of the velocity and size of the slender body, the extrusion and impact on the free liquid surface increased, and the phenomenon of "spatter" became more obvious and affected the whole flow field. With the increase of the angle of attack of the slender body, The degree of free liquid surface uplift on both sides of windward surface and leeward surface of slender body is asymmetrical, and the liquid surface uplift of slender body windward surface is steeper and has a smaller influence range. On the other hand, the leeward surface uplift is relatively gentle and has a large influence range. 7) the numerical simulation is used to calculate the ratio of length to diameter, the velocity of outlet water and the disturbance of outlet angle of attack to the free liquid surface, which is in good agreement with the experimental results.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TJ6;U674.70
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 施紅輝;高見卓也;;HYDRODYNAMIC BEHAVIOR OF AN UNDERWATER MOVING BODY AFTER WATER ENTRY[J];Acta Mechanica Sinica;2001年01期
2 施紅輝;KUME Makoto;;UNDERWATER ACOUSTICS AND CAVITATING FLOW OF WATER ENTRY[J];Acta Mechanica Sinica;2004年04期
3 賈力平;張嘉鐘;于開平;王聰;王海斌;;空化器線形與超空泡減阻效果關(guān)系研究[J];船舶工程;2006年02期
4 王海斌;張嘉鐘;魏英杰;王聰;于開平;賈力平;;水下航行體通氣超空泡減阻特性實驗研究[J];船舶工程;2006年03期
5 馮光,顏開;超空泡航行體水下彈道的數(shù)值計算[J];船舶力學(xué);2005年02期
6 權(quán)曉波;李巖;魏海鵬;呂海波;辛萬青;魯傳敬;;航行體出水過程空泡潰滅特性研究[J];船舶力學(xué);2008年04期
7 熊永亮;郜冶;王革;;水下超空泡航行體減阻能力的數(shù)值研究[J];彈道學(xué)報;2007年01期
8 易文俊;王中原;熊天紅;周衛(wèi)平;錢吉勝;;水下射彈典型空化器的超空泡形態(tài)特性分析[J];彈道學(xué)報;2008年02期
9 ;水下槍械內(nèi)彈道分析及其理論建模[J];彈道學(xué)報;1998年03期
10 劉樂華;張宇文;袁緒龍;;潛射導(dǎo)彈垂直出水流場數(shù)值研究[J];彈箭與制導(dǎo)學(xué)報;2004年S3期
相關(guān)博士學(xué)位論文 前2條
1 胡曉;水下航行體空泡流數(shù)值模擬研究[D];哈爾濱工程大學(xué);2012年
2 蔣運華;水中超空泡流及航行體彈道特性研究[D];哈爾濱工程大學(xué);2012年
本文編號:1510605
本文鏈接:http://sikaile.net/kejilunwen/chuanbolw/1510605.html