復合缺陷對低維納米材料電子輸運性能的調(diào)控及器件設計
[Abstract]:In recent years, with the rapid development of the nano-materials, the research of molecular devices has given great attention to the experimental design and the theoretical prediction. With the reduction of the size of the electronic device and the rapid development of the micro-electronic technology, the molecular device will replace the microelectronic device to become the leading force of the world's leading science and technology. As is well known, a variety of new nanomaterials are the primitives of the design of molecular devices. The advantage of the low-dimensional nano-material in the aspects of mechanics, electricity, optics and heat, especially the electron transport property, can play an important role in the development of the electronic device. In the process of the actual production and preparation of the nano-materials, the defects and the impurities are inevitably introduced, and the mechanical, electrical, optical and electron transport properties of the materials are affected, which makes the scientific research of the low-dimensional nanostructures containing defects and impurities more meaningful. In this paper, the control effect of several composite defects on the electron transport performance of low-dimensional nano-materials and the device design are systematically studied by using the first principle method of density functional theory and the non-equilibrium Green's function. The research objects involved include carbon nanotubes (CNTs), graphene nanoribbons (GNRs), and graphene nanobelt (Si NRs), and the like. The main contents of the study are as follows: The electron transport properties of spiral chiral single-walled carbon nanotubes (SWCNTs) with compound defects of nitrogen-containing vacancies are studied. The results of the calculation show that the introduction of the compound defect of the class-like compound composed of the vacancy and the nitrogen atom in the hand SWCNTs effectively improves the electron transport performance of the system, and the obvious negative differential resistance effect and the strong rectification effect are observed. Further studies have found that the variation of the transport coefficient of the composite doping system within the bias window is the root cause of the rectification effect. The electron structure and transport properties of the chiral (8,4) carbon nanotubes and the chiral (6,3) carbon nanotubes containing the encapsulated boron-deficient complex were studied. The results show that (i) for the (8,4) SWCNTs system, the defect state is generated near the Fermi level, whether the intrinsic defect or the compound defect containing the metal matrix. In which the electron local effect caused by the defect state of the intrinsic defect can hinder the electron conduction ability of the carbon nano tube, and the oxidation of the intrinsic defect to the intrinsic defect effectively enhances the transmission conductance of the SWCNTs. In this paper, the electron transport performance of the SWCNTs (SWCNTs) device with the matrix-based defect complex is further studied, which shows that the defect complex under the bias effect reduces the electronic conduction of the SWCNTs, and the device has a significant negative differential resistance effect. The system has a strong rectifying effect when and only when the single-vacancy defect of the high-performance molecular rectifier is defective, which provides valuable reference for the research of the high-performance molecular rectifier. (ii) For the (6,3) SWCNTs system, the encapsulated boron-vacancy composite structure is more stable than other composite defect structures. In this paper, the electron-conduction ability of (6,3) SWCNTs is enhanced by the compound defect of the encapsulated boron vacancy, and the combined defects of the encapsulated boron and the encapsulated boron SW have hindered the electron transport channel of the system. Further studies have confirmed that the phenomenon is completely attributable to the mutual coupling between the base and the molecular orbital of the boron-deficient complex. These special phenomena indicate the potential application value of the carbon nanotubes with the encapsulated defect complex in the research of the device. The effect of sinx on the electronic structure and transport properties of an armchair-type graphene nanobelt was studied. In which a sinx composite dopant is formed by embedding si and n atoms at an adjacent atomic lattice point. The results show that the sinx composite doped body causes the agrs system to generate the impurity state near the Fermi level, and the doping energy band moves down with the increase of the n-atom concentration and intersects the Fermi level. Further studies show that the impurity level and the donor energy level are separated and are all subject to the perturbation of the impurities. A significant negative differential resistance effect is observed in the sinx composite dopant system and the effect is reduced as the n concentration increases. This indicates that the low-n-concentration sinx composite doping can effectively adjust the electron-conducting properties of the armchair-type graphene nanobelt. The effect of a lattice point (aa-p2) on the electron structure and transport properties of an armchair-type silicon-ene nanobelt was studied. The results show that the conversion between the semiconductor and the metallic property occurs in the process of doping the aa-p2 impurity from the center of the nanobelt to the edge. This is due entirely to the mutual coupling between the impurity phosphorus (p) atom and the silicon (si) atom pz track. Each doping system has a symmetric negative differential resistance effect under a low bias voltage. However, with the process of the aa-p2 dopant from the center to the edge, the symmetry of the negative differential resistance effect is gradually reduced. More interesting is that the system has a strong rectifying effect when and only when aa-p2 is in the edge diagonally-doped position. Secondly, based on the stable aa-p2, the electron transport performance of the aa-p2-doped asinth device is studied. The left electrode is an ideal graphene nanobelt, and the right electrode is aa-p2-doped graphene nanobelt. The results show that the electron transport property of the device is strongly dependent on the width of the nanobelt and the doping position of aa-p2. A strong rectifying behavior is observed in the device, and the rectifying effect of the device can be effectively regulated by changing the width of the nanobelt and the aa-p2 impurity position. Further studies have shown that the coupling between the matching region of the left and right electrode bands and the corresponding molecular orbital and the electron energy band is the root cause of the rectification effect. The effects of the edge termination of fluorine (f) and hydroxyl (-oh) functional groups on the electron transport and rectification of two n-triangular graphene nanosheets (tgns) were studied. The results show that the edge modification of the left tgns (ltgns) by the f-atom and-oh functional group makes the molecular device exhibit the rectification behavior of different strength and direction. The difference of the atom or functional group to the ltgns edge modification position causes the molecular device to appear in a completely opposite direction of rectification. While the chemical activity of the edge-modified atoms or functional groups directly affects the rectification strength of the molecular device. Further studies have shown that the Schottky barrier produced by the movement of the charge between the left and right electrodes connected to one another and the left and right tgns cross-section is the root cause of the effect of the rectification. This is important for the understanding and development of the edge-tube-enabled tgns molecular rectifier. In this paper, the rectification behavior of the (al) atom and the phosphorus (p) atom vertex-doped n-triangular silicon nano-sheet (tsins)-junction device is studied. The results show that vertex doping in different configurations significantly affects the rectifying performance of the device. In which, the al-si and al-p-doped devices show forward rectification behavior, and the rectifying ratio of the al-p system is larger. In contrast, the Si-P doping system exhibits a reverse rectification behavior. This indicates that the different doping configurations of the left and right TSi Ns can effectively control the rectifying effect of the molecular junction device and provide favorable conditions for the design of the molecular rectifier.
【學位授予單位】:湖南大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TB383.1
【相似文獻】
相關期刊論文 前10條
1 杜仕國,施冬梅,鄧輝;納米材料的特異效應及其應用[J];自然雜志;2000年02期
2 ;納米材料 新世紀的黃金材料[J];城市技術監(jiān)督;2000年10期
3 ;什么是納米材料[J];中國粉體技術;2000年05期
4 鄒超賢;納米材料的制備及其應用[J];廣西化纖通訊;2000年01期
5 吳祖其;納米材料[J];光源與照明;2000年03期
6 ;納米材料的特性與應用方向[J];河北陶瓷;2000年04期
7 沈青;納米材料的性能[J];江蘇陶瓷;2000年01期
8 李良訓;納米材料的特性及應用[J];金山油化纖;2000年01期
9 劉冰,任蘭亭;21世紀材料發(fā)展的方向—納米材料[J];青島大學學報(自然科學版);2000年03期
10 劉憶,劉衛(wèi)華,訾樹燕,王彥芳;納米材料的特殊性能及其應用[J];沈陽工業(yè)大學學報;2000年01期
相關會議論文 前10條
1 王少強;邱化玉;;納米材料在造紙領域中的應用[A];'2006(第十三屆)全國造紙化學品開發(fā)應用技術研討會論文集[C];2006年
2 宋云揚;余濤;李艷軍;;納米材料的毒理學安全性研究進展[A];2010中國環(huán)境科學學會學術年會論文集(第四卷)[C];2010年
3 ;全國第二屆納米材料和技術應用會議[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(上卷)[C];2001年
4 鐘家湘;葛雄章;劉景春;;納米材料改造傳統(tǒng)產(chǎn)業(yè)的實踐與建議[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(上卷)[C];2001年
5 高善民;孫樹聲;;納米材料的應用及科研開發(fā)[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(上卷)[C];2001年
6 ;全國第二屆納米材料和技術應用會議[A];納米材料和技術應用進展——全國第二屆納米材料和技術應用會議論文集(下卷)[C];2001年
7 金一和;孫鵬;張穎花;;納米材料的潛在性危害問題[A];中國毒理學通訊[C];2001年
8 張一方;呂毓松;任德華;陳永康;;納米材料的二種制備方法及其特征[A];第四屆中國功能材料及其應用學術會議論文集[C];2001年
9 古宏晨;;納米材料產(chǎn)業(yè)化重大問題及共性問題[A];納米材料和技術應用進展——全國第三屆納米材料和技術應用會議論文集(上卷)[C];2003年
10 馬玉寶;任憲福;;納米科技與納米材料[A];納米材料和技術應用進展——全國第三屆納米材料和技術應用會議論文集(上卷)[C];2003年
相關重要報紙文章 前10條
1 記者 周建人;我國出臺首批納米材料國家標準[N];中國建材報;2005年
2 記者 王陽;上海形成納米材料測試服務體系[N];上?萍紙;2004年
3 ;納米材料七項標準出臺[N];世界金屬導報;2005年
4 通訊員 韋承金邋記者 馮國梧;納米材料也可污染環(huán)境[N];科技日報;2008年
5 廖聯(lián)明;納米材料 利弊皆因個頭小[N];健康報;2009年
6 盧水平;院士建議開展納米材料毒性研究[N];中國化工報;2009年
7 郭良宏 中國科學院生態(tài)環(huán)境研究中心研究員 江桂斌 中國科學院院士;納米材料的環(huán)境應用與毒性效應[N];中國社會科學報;2010年
8 記者 任雪梅 莫璇;中科院納米材料產(chǎn)業(yè)園落戶佛山[N];佛山日報;2011年
9 實習生 高敏;納米材料:小身材涵蓋多領域[N];科技日報;2014年
10 本報記者 李軍;納米材料加速傳統(tǒng)行業(yè)升級[N];中國化工報;2013年
相關博士學位論文 前10條
1 楊楊;功能化稀土納米材料的合成及其生物成像應用[D];復旦大學;2014年
2 王艷麗;基于氧化鈦和氧化錫納米材料的制備及其在能量存儲中的應用[D];復旦大學;2014年
3 吳勇權(quán);含銪稀土納米材料的功能化及其生物成像應用研究[D];復旦大學;2014年
4 曹仕秀;二硫化鎢(WS_2)納米材料的水熱合成與光吸收性能研究[D];重慶大學;2015年
5 廖蕾;基于功能納米材料的電化學催化研究[D];復旦大學;2014年
6 胥明;一維氧化物、硫化物納米材料的制備,,功能化與應用[D];復旦大學;2014年
7 李淑煥;納米材料親疏水性的實驗測定與計算預測[D];山東大學;2015年
8 范艷斌;亞細胞水平靶向的納米材料的設計、制備與應用[D];復旦大學;2014年
9 丁泓銘;納米粒子與細胞相互作用的理論模擬研究[D];南京大學;2015年
10 駱凱;基于金和石墨烯納米材料的生物分子化學發(fā)光新方法及其應用[D];西北大學;2015年
相關碩士學位論文 前10條
1 向蕓頡;卟啉納米材料的制備及其應用研究[D];重慶大學;2010年
2 劉武;層狀納米材料/聚合物復合改性瀝青的制備與性能[D];華南理工大學;2015年
3 劉小芳;基于納米材料/聚合膜材料構(gòu)建的電化學傳感器應用于生物小分子多組分的檢測[D];西南大學;2015年
4 王小萍;基于金納米材料構(gòu)建的電化學傳感器及其應用[D];上海師范大學;2015年
5 郭建華;金納米材料的修飾及其納米生物界面的研究[D];河北大學;2015年
6 魏杰;普魯士藍納米粒子的光熱毒性研究[D];上海師范大學;2015年
7 張華艷;改性TiO_2納米材料的制備及其光電性能研究[D];河北大學;2015年
8 胡雪連;基于納米材料的新型熒光傳感體系的構(gòu)筑[D];江南大學;2015年
9 黃樊;氧化鈷基催化材料形貌、晶面控制與催化性能研究[D];昆明理工大學;2015年
10 周佳林;新型核殼結(jié)構(gòu)金納米材料用于腫瘤的近紅外光熱治療研究[D];浙江大學;2015年
本文編號:2483746
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2483746.html