高穩(wěn)定性磁流變液的試驗(yàn)及力學(xué)性能研究
[Abstract]:The magneto-rheological fluid is a suspended liquid formed by uniformly dispersing the magnetic particles of the micron or nanometer level in the base liquid, the main components of which are magnetic particles, a carrier liquid and various additives. Under the effect of the applied magnetic field, the flow state can be rapidly changed from the flowing liquid state at the instant (millisecond level), and the flow state can be recovered again after the magnetic field is removed. Such rheological properties of the magnetorheological fluid can be used to design the magnetorheological damper. As a new type of intelligent material, the magnetorheological fluid has the advantages of large damping output, less energy consumption, real-time control, high precision and the like, and has good damping effect. Therefore, the performance of the magneto-rheological fluid will directly affect the ability of the MR damper to function normally. In order to make the magneto-rheological damper achieve the above-mentioned advantages, the magnetorheological fluid should have the characteristics of good stability, difficult agglomeration, low zero field viscosity, high shear yield stress and the like. At present, the researchers at home and abroad have made a lot of research on the magneto-rheological fluid, and some results have been obtained, but the high-performance magneto-rheological fluid is prepared, and the micro-model for describing the magneto-rheological behavior of the magneto-rheological fluid is established. There are still some problems to be solved in the design of shear yield stress testing device, and the research work of the magneto-rheological fluid still needs to be carried out further and in-depth. In this paper, the method of preparation, rheological and mechanical behavior of the magneto-rheological fluid is studied from the basic properties of the magneto-rheological fluid by means of the combination of the test and the theory, the macroscopic and the micro-micro-simultaneous methods, and the magnetorheological fluid with high stability is prepared by the method, the rheological property and the mechanical behavior of the magnetorheological fluid, The initial inclined chain model of the magneto-rheological fluid with carbon-coated particles is put forward, and the integrated testing device for shear yield stress of the magneto-rheological fluid is developed and developed. This paper deals with the fields of ferromechanics, fluid mechanics, electromagnetics, material chemistry and so on, and has obtained some conclusions with certain reference value through experimental observation and theoretical analysis. The research work in this paper is mainly characterized by the following aspects:1) The preparation of multi-wall carbon nano-tube coated magnetic particles, the study of the dosage of each material and the preparation process, preferably the composite magnetic particle with the best coating effect; 2) the prepared multi-wall carbon nano-tube coated magnetic particles are combined with the surface active agent modified magnetic particles developed by the research group in advance, and the magnetorheological fluid with different proportions is prepared by adopting different volume fractions and adding different amounts of additives; 3) The stability, zero-field viscosity and shear yield stress of the developed magnetorheological fluid are tested, the influence of the dosage ratio of the two composite magnetic particles, the volume fraction of the magnetic particle and the dosage of the additive on the performance of the magneto-rheological fluid is studied, and the magneto-rheological fluid with good indexes is obtained, and 4) designing a parallel disk type magnetorheological fluid shear yield stress integrated test device based on the working mode improvement of the magnetorheological fluid, The research on the sensor and the data acquisition has developed an integrated test device with uniform magnetic field and convenient use, and 5) based on the chain-forming rule and the chain-forming mechanism of the magneto-rheological fluid, based on the dipole theory, the initial inclined chain model of the magneto-rheological fluid added with the carbon-coated particles is deduced, The influence of the magnetic induction intensity and volume fraction on the shear yield stress is analyzed from the micro-level, and the theoretical analysis results of the model are compared with the test results, and the correctness of the initial inclined chain model of the magneto-rheological fluid to which the carbon-coated particles are added is verified. The innovation of the invention is that:1) multi-wall carbon nano-tube-coated magnetic particles are prepared, and the magnetic rheological fluid is developed together with the surfactant-modified magnetic particles as mixed magnetic particles, The test results show that the addition of the multi-wall carbon nanotube coated magnetic particles can improve the stability of the magneto-rheological fluid, and at the same time, the influence of the dosage ratio of the two magnetic particles on the settlement rate and the zero-field viscosity of the magneto-rheological fluid is obtained. 2) Perfect and develop a parallel disk type magneto-rheological fluid shear yield stress integrated test device;3) put forward the initial inclined chain model of the magneto-rheological fluid to which the carbon-coated particles are added, and compare it with the test results.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB381;TB302
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙曉昱,趙波;應(yīng)用于車輛工程的磁流變液組成機(jī)理的探討[J];汽車技術(shù);2004年10期
2 趙雯;張秋禹;王結(jié)良;張軍平;;磁流變液及其應(yīng)用[J];材料導(dǎo)報(bào);2004年05期
3 鄭軍,曹興進(jìn);磁流變液特性及其裝置在工程領(lǐng)域中的應(yīng)用[J];現(xiàn)代制造工程;2005年06期
4 王可俐,廖昌榮,陳愛軍,陳偉民;磁流變材料流變學(xué)參數(shù)與檢測方法[J];傳感器技術(shù);2005年06期
5 郝瑞參,李德才;磁流變體的發(fā)展特性及應(yīng)用前景[J];機(jī)械工程師;2005年07期
6 李海濤;彭向和;陳偉民;;磁流變液流變特性的數(shù)值模擬分析[J];功能材料;2006年05期
7 胡皓;彭小強(qiáng);戴一帆;;磁流變拋光液流變性測試研究[J];儀器儀表學(xué)報(bào);2007年05期
8 阮承斌;蔣賢芳;;磁流變液穩(wěn)定性研究[J];新技術(shù)新工藝;2008年12期
9 王鴻云;鄭惠強(qiáng);李泳鮮;;磁流變液的研究與應(yīng)用[J];機(jī)械設(shè)計(jì);2008年05期
10 王鴻云;鄭惠強(qiáng);李泳鮮;;磁流變液技術(shù)及應(yīng)用研究[J];材料導(dǎo)報(bào);2008年06期
相關(guān)會(huì)議論文 前10條
1 張建;張進(jìn)秋;賈進(jìn)峰;;基于不同母液的磁流變液的特性分析[A];中國化學(xué)會(huì)、中國力學(xué)學(xué)會(huì)第九屆全國流變學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2008年
2 ;第六屆全國電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議簡介[A];第六屆全國電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2011年
3 李金海;張松林;;磁流變液的顆粒沉降理論分析與實(shí)驗(yàn)[A];第六屆全國電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2011年
4 關(guān)新春;歐進(jìn)萍;;一種優(yōu)質(zhì)磁流變液的研制[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國材料研討會(huì)論文集[C];2000年
5 李金海;關(guān)新春;歐進(jìn)萍;;磁流變液的配制及其流變模型的研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅰ[C];2004年
6 程灝波;王英偉;馮之敬;;永磁流變拋光中磁流變液的性能研究[A];第五屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅰ[C];2004年
7 楊紹普;郭樹起;;磁流變智能材料的性質(zhì)及其應(yīng)用[A];第七屆全國非線性動(dòng)力學(xué)學(xué)術(shù)會(huì)議和第九屆全國非線性振動(dòng)學(xué)術(shù)會(huì)議論文集[C];2004年
8 林忠華;;磁流變液的介電常數(shù)研究[A];福建省科協(xié)第五屆學(xué)術(shù)年會(huì)數(shù)字化制造及其它先進(jìn)制造技術(shù)專題學(xué)術(shù)年會(huì)論文集[C];2005年
9 王海霞;阮予明;孔筍;王捷;;磁流變液流變性實(shí)驗(yàn)及分析[A];中國化學(xué)會(huì)、中國力學(xué)學(xué)會(huì)第九屆全國流變學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2008年
10 ;第六屆全國電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議組織機(jī)構(gòu)[A];第六屆全國電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前3條
1 茆琛 李平;我國磁流變懸掛控制系統(tǒng)取得核心技術(shù)突破[N];大眾科技報(bào);2006年
2 楊孝文;5項(xiàng)新奇而可怕的軍事技術(shù)[N];中國國防報(bào);2009年
3 巴文;巴斯夫羰基鐵粉磁流變液面市[N];中國化工報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 陳飛;磁流變液制備及動(dòng)力傳動(dòng)技術(shù)研究[D];中國礦業(yè)大學(xué);2013年
2 邢健;基于磁流變液阻尼器的轉(zhuǎn)子系統(tǒng)振動(dòng)主動(dòng)控制研究[D];北京化工大學(xué);2015年
3 羅善德;基于Biot理論的電磁流變液吸聲特性研究[D];華中科技大學(xué);2015年
4 苗運(yùn)江;磁流變液屈服應(yīng)力測試影響因素與磁流變液軟啟動(dòng)裝置的研究[D];中國礦業(yè)大學(xué);2009年
5 易成建;磁流變液:制備、性能測試與本構(gòu)模型[D];重慶大學(xué);2011年
6 張峰;磁流變拋光技術(shù)的研究[D];中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所;2000年
7 趙春偉;基于微結(jié)構(gòu)的磁流變液力學(xué)性能研究[D];重慶大學(xué);2014年
8 崔治;磁流變液裝置研究及其在非球面研拋中的應(yīng)用[D];吉林大學(xué);2009年
9 程海斌;磁流變液的穩(wěn)定性調(diào)控及其在重大工程中應(yīng)用[D];武漢理工大學(xué);2012年
10 周洪亮;環(huán)冷機(jī)磁流變液密封理論與試驗(yàn)研究[D];燕山大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 楊巖;磁流變液離合器的設(shè)計(jì)與試驗(yàn)分析[D];重慶大學(xué);2005年
2 畢成;磁流變液擠—剪特性研究及其在離合器中的仿真應(yīng)用[D];浙江工業(yè)大學(xué);2013年
3 徐彪;基于磁流變?cè)淼男D(zhuǎn)件加載裝置研究[D];上海工程技術(shù)大學(xué);2015年
4 葉盾;新型微納米磁流變液及其性能研究[D];上海應(yīng)用技術(shù)學(xué)院;2015年
5 余浩;磁流變液阻尼器及其性能研究[D];上海應(yīng)用技術(shù)學(xué)院;2015年
6 季海峰;復(fù)合場下磁流變液圓筒模型剪切應(yīng)力特性研究[D];浙江師范大學(xué);2015年
7 徐江;小工具頭磁流變拋光工藝及拋光軌跡研究[D];哈爾濱工業(yè)大學(xué);2015年
8 王冬冬;硅油基磁流變液傳動(dòng)特性研究[D];中國礦業(yè)大學(xué);2015年
9 李三妞;基于磁流變液拖拉機(jī)半主動(dòng)座椅懸架減振系統(tǒng)研究[D];河南科技大學(xué);2015年
10 楊沫;磁流變液剪切力檢測技術(shù)研究[D];西安工業(yè)大學(xué);2013年
,本文編號(hào):2446343
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2446343.html