鑄造燒結(jié)銅基表面復(fù)合材料的工藝及其組織和性能研究
[Abstract]:In modern industrial production, machinery and equipment often have to work in a harsh working environment for a long time. Mechanical parts are prone to wear and corrosion. It leads to the failure of machinery and equipment, and the loss of enterprises is serious. Therefore, mechanical equipment materials are required to have high wear resistance, corrosion resistance, high temperature resistance, and can be used in harsh working conditions. Changing the surface properties of materials is the best way to prevent and cure this problem. So far, there are many surface modification methods, including thermal spraying, laser cladding, electroplating, thermal diffusion, chemical infiltration, casting infiltration and so on. Casting sintering is a new technology for preparing metal matrix surface composites. It has the advantages of simple process, material saving, high heat flux, short sintering time and so on. The fabricated metal matrix surface composite workpieces have excellent comprehensive properties. In this paper, self-fusing Ni60 alloy powder, self-fluxing Cu powder Al powder CuO powder and other alloy systems were used to investigate the casting sintering process of pure copper. The effects of different sintering systems and technological parameters on the formation of cast sintering composite layer on Cu-based surface were investigated. By means of optical microscope, scanning electron microscope, energy dispersive spectroscopy and X-ray diffractometer, the microstructure, phase composition, distribution and morphology of the cast-sintering composite layer and the bonding between the sintered layer and the matrix were analyzed. At the same time, the effect of Al2O3 reinforced particles on the microstructure and properties of cast-sintering composite layer was also studied. The results show that: 1) the sintering effect of Cu-based alloy powder is not very good. The addition of 1%Al 4%CuO reaction system can improve the sintering effect of Cu-based alloy powder to a certain extent, and further increase the amount of Al CuO reaction system. Because of the intense reaction, the bonding effect between the sintered layer and the matrix and the density of the sintered layer will be reduced. Adding Al2O3 to the self-fluxing Cu-based alloy powder will reduce the interfacial bonding strength of the sample, and the porosity of the sintered layer will also increase, and the densification degree will decrease continuously. However, the hardness increases with the increase of Al2O3. 2) Ni-based surface sintering layer can combine with the matrix surface in metallurgy. The sintering layer has higher strength and density, and the casting sintering effect is obviously better than that of self-fluxing Cu-Ni-based surface sintering layer. The sintering layer on Ni-based surface is obviously divided into two layers: the outer layer is Ni60/Al2O3 composite layer and the inner layer is diffusion layer. The phase composition of the composite layer is mainly Ni-based solid solution, and the hardness of the composite sintered with the rigid phase boride CrB, intermetallic compound Cr3Ni2.3) Ni60-Al2O3 is obviously higher than that of the matrix material. The hardness reached the maximum when the content of Al2O3 was 10%. When the Al2O3 content of the composite layer is 10%, the thermal conductivity is the largest, which is more conducive to the high temperature work. The density of the composite layer is not good enough at 20% and the thermal conductivity is the smallest. The wear resistance of Ni-based sintering layer can be improved by adding appropriate amount of Al2O3, the wear resistance is the best when the content of Al2O3 is 10%, the wear resistance is worse when the content of Al2O3 is up to 20%. When the content of Al2O3 is 20%, the bonding strength of the sintered layer is low, and the powder particles will fall off during friction, which will seriously affect the wear resistance of the sintered layer.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG24;TB33
【相似文獻】
相關(guān)期刊論文 前10條
1 趙根業(yè),楊斌;燕于山礦復(fù)合層下開采問題的探討[J];同煤科技;2001年03期
2 В.И.Серегин;謝繼三;;生產(chǎn)鋁塑制品的連續(xù)工藝[J];輕金屬;1982年02期
3 梁濟,蔡惠民;鑄鐵件表面高錳復(fù)合層的研究[J];鑄造;1991年04期
4 孫萬昌;張磊;張晗;盧建華;;金屬表面復(fù)合層研究進展[J];熱加工工藝;2011年16期
5 石功奇,周守則,丁培道;金屬陶瓷復(fù)合層的組織與性能研究[J];兵器材料科學(xué)與工程;1992年02期
6 賈利曉,陳躍,張永振,上官寶,鐵喜順,蘭曄峰;鑄鋼件表面鑄滲鎢鉻復(fù)合層的研究[J];熱加工工藝;2004年03期
7 趙士陽;張永振;;釩鉻表面復(fù)合層的沖擊磨損性能研究[J];礦山機械;2009年16期
8 王一三,黃文,曾光廷;鑄滲表面耐磨復(fù)合層的研究[J];鑄造;1999年04期
9 劉欣中;堿熔釜鎳復(fù)合層缺陷的修復(fù)[J];化工科技;2000年02期
10 李向忠;鄧金明;;采用復(fù)合層襯里的混酸槽[J];化肥工業(yè);1991年04期
相關(guān)會議論文 前3條
1 顧卡麗;李云峰;吳伊敏;;電沉積鉻-活性碳復(fù)合層摩擦學(xué)性能研究[A];第五屆全國摩擦學(xué)學(xué)術(shù)會議論文集(上冊)[C];1992年
2 楊屹;馮可芹;申開智;;基于鑄造法制備鐵基表面復(fù)合材料-表面復(fù)合層點火特征的研究[A];第六屆21。ㄊ、自治區(qū))4市鑄造學(xué)術(shù)會議論文集[C];2004年
3 湯皎寧;謝友柏;;化學(xué)沉積Ni-P-PTFE復(fù)合層的研究[A];第二屆全國青年摩擦學(xué)學(xué)術(shù)會議論文專輯[C];1993年
相關(guān)重要報紙文章 前1條
1 本報記者 許晟;防偽利器——夾筋網(wǎng)復(fù)合層包裝[N];中國包裝報;2004年
相關(guān)博士學(xué)位論文 前3條
1 王鄧志;激光—感應(yīng)復(fù)合熔覆金屬硅化物基復(fù)合層的技術(shù)基礎(chǔ)研究[D];華中科技大學(xué);2014年
2 陸斌鋒;高能束原位合成碳化鉻表面復(fù)合層及其耐磨性能[D];上海交通大學(xué);2010年
3 張越;復(fù)合層合槍管強度及溫度場的理論分析與試驗研究[D];南京理工大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 譚紹武;鑄造燒結(jié)銅基表面復(fù)合材料的工藝及其組織和性能研究[D];南昌航空大學(xué);2015年
2 陸峰;鎢對等離子熔覆耐磨復(fù)合層的組織性能影響研究[D];山東科技大學(xué);2011年
3 王鎮(zhèn);耐熱鋼篦條鑄滲鋁硅復(fù)合層的研究[D];山東大學(xué);2014年
4 胡鍇;化學(xué)法與電化學(xué)法制備HA/COL復(fù)合層的研究[D];天津大學(xué);2007年
5 苗耀新;WC/Cu基合金非光滑耐磨復(fù)合層的研究[D];吉林大學(xué);2004年
6 羅飛飛;不同硅滲劑對鋼件表面鑄滲復(fù)合層組織與性能的影響[D];新疆大學(xué);2014年
7 周柱坤;A1表面復(fù)合層的表面機械合金化制備與性能研究[D];廣西大學(xué);2014年
8 朱理奎;鋼表面涂層攪拌摩擦加工作用機制和組織性能研究[D];湖北工業(yè)大學(xué);2015年
9 龔軍;耐熱鑄鋼件表面鑄滲結(jié)晶硅復(fù)合層技術(shù)的研究[D];新疆大學(xué);2007年
10 張興元;Al_2O_3/Cu表面復(fù)合層制備工藝及性能研究[D];遼寧工程技術(shù)大學(xué);2005年
,本文編號:2446126
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2446126.html