拓?fù)浣^緣體材料的制備與表征
[Abstract]:A topological insulator is a class of special insulators whose body is insulated and whose surface is a special insulator with time inversion symmetry protection metal state due to the strong spin orbit coupling. Non-interference "avoids the electronic energy consumption caused by the disorder collision of electrons, which is of great significance to solve the problem of semiconductor industry and even the development of information technology." The Bi2Se3, in the second generation 3D topological insulator is the most close to the ideal state because it is a pure chemical phase and the surface state has only one Dirac point. The energy gap is 0.3eV (equivalent to 3600K), which is the largest topological insulator with energy gap at present. In recent years, it has become the focus of attention and research. In this paper, the development, classification and application of topological insulators are summarized, and Bi2Se3, the most representative of topological insulators, is chosen as the research object. The topological surface properties of Bi2Se3 crystals are easily masked by body state, which makes it difficult to observe the phenomenon of topological insulation. Due to the large specific surface area of nano-materials, Bi2Se3 nanostructures are conducive to the study of their unique surface states, and are also very important for practical applications of devices. In this paper, Bi2Se3 nanostructures were prepared by an economical and efficient chemical vapor deposition (CVD) method. The main contents of this study were as follows: (1) the effect of Se on the synthesis of Bi2Se3 nanostructures was investigated by adding Se powder into the Bi2Se3 powder of evaporation source. The addition of Se powder into the evaporator can improve the crystallization quality of Bi2Se3, facilitate the transverse growth of Bi2Se3 nanostructures, and ensure that the atomic ratio of Se to Bi is closer to the standard value of 1.5. At the same time, the Raman characteristic peaks A121g and Eg of Bi2Se3 are blue shifted. (2) to investigate the effect of Bi2Se3, preparation temperature on Bi2Se3 nanostructures at different growth temperatures. With the increase of temperature, the crystallization quality and surface size of the prepared Bi2Se3 become better and better, and the growth mechanism changes from VLS to VS, while the atomic ratio of Se to Bi decreases. At 650 擄C, bismuth oxide appears in the product, which results in the red shift of the Raman vibration peak A11g. Finally, the optimum growth temperature was found to be 500 擄C. (3) Bi2Se3, was synthesized at the same temperature (500 擄C),) for different growth time to investigate the effect of growth time on Bi2Se3 nanostructures. With the increase of growth time, the crystalline quality of the synthesized Bi2Se3 nanostructures increases gradually, and the crystallization quality tends to be stable after about 10min. The surface size of Bi2Se3 nanostructures increases continuously, and the intensity of Raman peaks increases first and then decreases. The atomic ratio of Se to Bi decreases. Finally, the optimum growth time was found to be 10-20 min. (4) graphene was grown on copper foil by chemical vapor deposition and transferred to SiO2 substrate by wet method. Bi2Se3, was synthesized by using graphene as buffer layer to investigate the effect of graphene on the preparation of Bi2Se3 nanoparticles. The addition of graphene helps to improve the crystallization quality of Bi2Se3 nanocrystals, and makes the growth of Bi2Se3 nanoparticles along the C-axis more obvious. In addition, the in-plane vibration peak E2g of Bi2Se3 is red-shifted due to the addition of graphene.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM21;TB383.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 莫尊理;朱小波;趙國(guó)平;王博;郭瑞斌;;石墨烯的光電性能及其應(yīng)用[J];硅酸鹽通報(bào);2013年09期
2 郭帥;吳孝松;;介觀樣品低溫?zé)犭娦?yīng)的測(cè)量方法[J];低溫物理學(xué)報(bào);2013年05期
3 董世運(yùn);徐濱士;王玉江;魏世丞;;石墨烯制備和應(yīng)用中的表面科學(xué)與技術(shù)[J];中國(guó)表面工程;2013年06期
4 范海波;王旋;周晨露;陳武軍;鄭新亮;姚合寶;劉生忠;;ZnO納米棒/石墨烯異質(zhì)結(jié)構(gòu)的應(yīng)用研究進(jìn)展[J];材料導(dǎo)報(bào);2013年15期
5 李宏;李云;;石墨烯透明導(dǎo)電薄膜的研究現(xiàn)狀及應(yīng)用前景[J];材料導(dǎo)報(bào);2013年15期
6 王亞平;李英芝;張清華;;石墨烯/聚酰亞胺復(fù)合材料的制備與性能[J];高分子材料科學(xué)與工程;2013年12期
7 石文榮;鄒鵬;楊書華;黃德歡;;一種石墨烯制備方法[J];兵器材料科學(xué)與工程;2013年06期
8 楊云雪;關(guān)毅;張利華;;熱剝離法制備功能型石墨烯的研究進(jìn)展[J];功能材料;2013年24期
9 何青;馬愛斌;江靜華;宋丹;陳建清;楊東輝;鄒中秋;李玉華;;石墨烯的制備及其在金屬防腐中的應(yīng)用進(jìn)展[J];功能材料;2013年S2期
10 張鳳;方新心;成霽;唐逢杰;金慶輝;趙建龍;;硅基石墨烯場(chǎng)效應(yīng)管關(guān)鍵工藝研究[J];功能材料;2013年S2期
相關(guān)會(huì)議論文 前2條
1 王雅雯;蒲斌;郭瑞斌;莫尊理;;石墨烯/納米鈷復(fù)合材料的制備及電磁性能研究[A];甘肅省化學(xué)會(huì)第二十八屆年會(huì)暨第十屆中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文集[C];2013年
2 杝隆建;李冠霖;T3家任;;石墨烯場(chǎng)激發(fā)光元件的開發(fā)[A];海峽兩岸第二十一屆照明科技與營(yíng)銷研討會(huì)專題報(bào)告暨論文集[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 李成均;含鈦類鋰電池負(fù)極材料的合成及其電化學(xué)性能的研究[D];華東理工大學(xué);2013年
2 杜憲;石墨烯的可控制備、后處理及其電化學(xué)電容性能研究[D];北京化工大學(xué);2013年
3 馮紅彬;石墨烯及其復(fù)合材料的制備、性質(zhì)及應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
4 胡曉陽;碳納米管和石墨烯的制備及應(yīng)用研究[D];鄭州大學(xué);2013年
5 黃靜;自懸浮聚苯胺的制備、結(jié)構(gòu)及其復(fù)合材料的特性研究[D];武漢理工大學(xué);2013年
6 李彩霞;石墨烯及其組裝材料的制備與表征[D];華東師范大學(xué);2013年
7 廖瑞娟;茶多酚修飾石墨烯及其橡膠復(fù)合材料[D];華南理工大學(xué);2013年
8 張葉臻;新型石墨紙和石墨烯在微生物燃料電池中的應(yīng)用研究[D];華南理工大學(xué);2013年
9 胡愛平;納米Fe_3O_4/石墨烯電極材料制備及電化學(xué)性能研究[D];湖南大學(xué);2013年
10 孫_g;水相外延法生長(zhǎng)典型Ⅴ族元素含氧酸鹽及光譜特性分析[D];哈爾濱工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 黃奎;大面積高質(zhì)量石墨烯的制備與表征[D];蘇州大學(xué);2013年
2 何朝東;石墨烯(氧化石墨)/銀復(fù)合材料的制備和性能研究[D];北京化工大學(xué);2013年
3 汪勝平;改性石墨烯/氮摻雜二氧化鈦雜化材料的制備及其光催化活性的研究[D];鄭州大學(xué);2013年
4 郭煥煥;銀/石墨烯納米復(fù)合材料的制備及其對(duì)MCF-7細(xì)胞毒性探索[D];鄭州大學(xué);2013年
5 李利花;超臨界二氧化碳輔助石墨烯的制備、功能化及在燃料電池中的應(yīng)用[D];鄭州大學(xué);2013年
6 訾麗娟;基于碳納米管和石墨烯修飾電極的構(gòu)筑及分析應(yīng)用[D];鄭州大學(xué);2013年
7 胡曉煒;基于氧化石墨烯/聚苯胺的生物傳感器[D];安徽大學(xué);2013年
8 相金;氧化鈦基復(fù)合薄膜的制備及光電轉(zhuǎn)換性質(zhì)[D];安徽大學(xué);2013年
9 閆曼曼;石墨烯納米片的非基板化學(xué)合成及機(jī)理研究[D];北京化工大學(xué);2013年
10 謝德鈺;石墨烯及其復(fù)合材料的制備與儲(chǔ)能應(yīng)用[D];西南交通大學(xué);2013年
本文編號(hào):2297344
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2297344.html