磁流變膠泥的制備及其性能研究
[Abstract]:As a kind of intelligent material controlled by magnetic field, Mr materials mainly include magnetorheological fluid, magnetorheological elastomer, magnetorheological plastic body, magnetorheological lipids and so on. They can be used in building, automobile, medical treatment, military and other fields of vibration isolation and buffer equipment. However, its wide application is limited by its defects. The problems such as poor settling stability of magnetorheological fluid, small shear yield stress, narrow controllable range of magneto-rheological elastomer, easy oil separation of magnetorheological lipids and poor temperature stability are pointed out. In this paper, a new type of magnetorheological material, magnetorheological slime, was prepared by using elastomeric slime with high degree of polymerization linear polysiloxane as carrier liquid. The preparation and basic properties, rheological and viscoelastic properties of the materials were studied. The main works are as follows: 1. The existing magnetorheological materials and their engineering application prospects are analyzed. A new type of magnetorheological material, magnetorheological slime, which is loaded with elastic slime with high degree of polymerization, is proposed. The research significance and main research contents of this subject are described. 2 starting from the microstructure of MRM, a new type of magnetorheological slime with high polymerization degree linear polysiloxane is proposed. Based on the theory of field-induced dipole, the magnetic-induced shear stress model based on single-chain structure is established, and the analytical model of magnetic-induced shear stress is obtained on the assumption that the angle between the chain and the magnetic field direction is exponentially distributed. The results show that the magnetically induced shear stress is directly proportional to the volume fraction of magnetized particles and the square of magnetic field, and is related to the magnetization characteristics and distribution of magnetized particles. When the radius of magnetized particles is 1?m~5?m, the growth rate of magnetostrictive shear stress is fast, and the effect of magnetization on shear stress is small when the magnetic particle radius is larger than 5 nm. The model can be applied to the selection of raw materials and the explanation and description of experimental phenomena during the preparation of magnetorheological cement. 3 the selection principles of carrier liquid, magnetized particles and additives are analyzed. Twelve kinds of magnetorheological mortar samples were prepared by combining the synthetic process of elastic slime and the preparation of magneto-rheological material. The results of infrared spectroscopy, optical microstructure observation, natural observation of sedimentation rate and magnetization characteristics show that the prepared magnetorheological cement has good dispersion, no plate junction, and low remanence and coercivity. The rheological properties of magnetorheological slime were tested by MCR-301 rheometer after 300 days of settling rate was not more than 5.4. The constitutive relation of MRM was fitted by H-B model and its constitutive parameters were identified. The results show that H-B model can describe the constitutive relation of magnetorheological slime. The effects of magnetizable particle content, applied magnetic field, carrier liquid and temperature on the shear stress of magnetorheological slime were measured and analyzed. The results show that the increase of magnetized particle content, magnetic field and viscosity of the liquid carrier can increase the shear stress. The shear stress decreases with the increase of temperature. In addition, when the shear rate is 200s-1 and the magnetic field is 0 ~ 1T, the shear stress adjustment range of 20wcp60% magnetorheological mortar is 14.1k Pa~128 k Pa.5. The viscoelastic properties of MRM are studied under the oscillatory shear mode of MCR-301 rheometer. The relationship between energy storage modulus, loss factor and strain, magnetic field and frequency is analyzed. The results show that the relative magnetorheological effect of 20wccp20% samples can reach 1 400 and the linear viscoelastic region can be widened by increasing the magnetic field, and the linear viscoelastic region at 1T is 20 times as high as that at 0T. In the linear viscoelastic region, the magnetorheological mortar is mainly elastic and the storage modulus is independent of frequency, while in the nonlinear viscoelastic region, the magnetorheological mortar is mainly viscous and the energy storage modulus increases linearly with the frequency.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB381
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 余心宏,馬偉增,王立忠;磁流變體制備與應(yīng)用研究[J];電子工藝技術(shù);2001年04期
2 路家斌;閻秋生;田虹;高偉強(qiáng);;磁流變效應(yīng)微磨頭拋光特性研究[J];金剛石與磨料磨具工程;2009年04期
3 陶曉峰;楊建國(guó);李蓓智;李中會(huì);;光學(xué)玻璃磁流變拋光液的研究與材料去除實(shí)驗(yàn)[J];機(jī)械設(shè)計(jì)與制造;2011年02期
4 廖昌榮,李立新,陳偉民,黃尚廉;磁流變材料及其在振動(dòng)控制中的應(yīng)用[J];材料導(dǎo)報(bào);2000年06期
5 黃豪彩,黃宜堅(jiān);磁流變技術(shù)及其在機(jī)械工程中的應(yīng)用[J];制造技術(shù)與機(jī)床;2003年04期
6 付仟騫;王金剛;印敬亮;;磁流變體的特性及測(cè)試[J];內(nèi)蒙古石油化工;2006年03期
7 秦利軍;龔興龍;江萬(wàn)權(quán);李劍鋒;彭超;;鐵粉含量對(duì)明膠基磁流變膠流變性能的影響[J];機(jī)械工程材料;2010年05期
8 余娟;;磁流變即效微砂輪加工玻璃表面的形貌特征研究[J];金剛石與磨料磨具工程;2013年04期
9 張鵬程;閻秋生;路家斌;;磨料對(duì)磁流變工作液性能及加工效果的影響[J];金剛石與磨料磨具工程;2010年01期
10 余淼;夏永強(qiáng);;基于鏈化分析的磁流變彈性體剪切模量模型[J];功能材料;2009年11期
相關(guān)會(huì)議論文 前10條
1 黃尚廉;;磁流變技術(shù)及其潛在工程應(yīng)用概述[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
2 廖昌榮;張玉麟;李立新;陳偉民;黃尚廉;;磁流變材料的模型描述及影響因素分析[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
3 宣守虎;張燕麗;周玉鳳;江萬(wàn)權(quán);龔興龍;;相變型磁流變材料的制備與力學(xué)性能研究[A];第六屆全國(guó)電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2011年
4 王慶輝;吳張永;溫成卓;吳喜;;磁流變液壓技術(shù)的發(fā)展現(xiàn)狀與展望[A];2011裝備制造業(yè)綠色創(chuàng)造 節(jié)能減排發(fā)展論壇論文集[C];2011年
5 葉興柱;龔興龍;江萬(wàn)權(quán);嚴(yán)長(zhǎng)青;;磁流變膠的沉降和力學(xué)性能研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(3)[C];2007年
6 湯愛(ài)軍;閻秋生;路家斌;高偉強(qiáng);李偉華;田虹;;磁極形狀對(duì)磁流變拋光加工效果影響的研究[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2007年
7 湯愛(ài)軍;閻秋生;路家斌;高偉強(qiáng);李偉華;田虹;;磁極形狀對(duì)磁流變拋光加工效果影響的研究[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)之第12屆全國(guó)特種加工學(xué)術(shù)會(huì)議論文集[C];2007年
8 許陽(yáng)光;龔興龍;宣守虎;;新型高性能磁流變材料的制備、表征及機(jī)理研究[A];第六屆全國(guó)電磁流變液及其應(yīng)用學(xué)術(shù)會(huì)議程序冊(cè)及論文摘要集[C];2011年
9 盧秀首;喬秀穎;龔興龍;楊濤;李偉;孫康;李盟;楊康;謝宏恩;殷奇;王東;陳曉東;;各向同性和各向異性熱塑性磁流變彈性體的制備與表征[A];中國(guó)流變學(xué)研究進(jìn)展(2010)[C];2010年
10 宣守虎;張燕麗;江萬(wàn)權(quán);龔興龍;;磁性橡皮泥的力學(xué)性能研究[A];第十三屆全國(guó)實(shí)驗(yàn)力學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
相關(guān)博士學(xué)位論文 前10條
1 鄭軍;磁流變傳動(dòng)理論與試驗(yàn)研究[D];重慶大學(xué);2008年
2 司鵠;磁流變體的力學(xué)機(jī)理研究[D];重慶大學(xué);2003年
3 柴京富;集群磁流變效應(yīng)研磨刷研拋工具加工機(jī)理研究[D];廣東工業(yè)大學(xué);2011年
4 彭小強(qiáng);確定性磁流變拋光的關(guān)鍵技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年
5 白楊;磁流變拋光液的研制及去除函數(shù)穩(wěn)定性研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2015年
6 路家斌;電磁流變協(xié)同效應(yīng)微磨頭加工機(jī)理研究[D];廣東工業(yè)大學(xué);2011年
7 陳琳;磁流變彈性體的研制及其力學(xué)行為的表征[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年
8 張瑋;復(fù)合型磁流變彈性體的研制及其性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年
9 王慧軍;超聲波磁流變復(fù)合拋光關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2007年
10 王銀玲;橡膠基金屬鐵粒子復(fù)合材料的制備及其作為磁流變彈性體在安全工程中應(yīng)用的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 李林斌;磁流變拋光循環(huán)系統(tǒng)優(yōu)化設(shè)計(jì)技術(shù)研究[D];中國(guó)工程物理研究院;2012年
2 吳雨駿;磁流變彈性體觸覺(jué)傳感作動(dòng)器設(shè)計(jì)與特性分析[D];南京理工大學(xué);2015年
3 王磊;磁流變彈性體雙轉(zhuǎn)子自供電減振器結(jié)構(gòu)設(shè)計(jì)與動(dòng)力學(xué)特性分析[D];青島理工大學(xué);2015年
4 杜偉軍;慣組磁流變減振器設(shè)計(jì)及性能分析[D];南京理工大學(xué);2015年
5 韓利國(guó);金屬材料磁流變光整加工技術(shù)研究[D];西安工業(yè)大學(xué);2015年
6 劉術(shù)志;聚氨酯基磁流變材料磁控電磁學(xué)特性研究[D];重慶大學(xué);2015年
7 馮娜;藍(lán)寶石磁流變拋光液的研究[D];西安工業(yè)大學(xué);2014年
8 吳春江;汽車磁流變脂碰撞緩沖器的結(jié)構(gòu)優(yōu)化研究[D];重慶交通大學(xué);2015年
9 王芳芳;磁流變膠泥的制備及其性能研究[D];重慶大學(xué);2015年
10 田杰;磁流變緩沖器驅(qū)動(dòng)電流源研究[D];重慶大學(xué);2015年
,本文編號(hào):2297045
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2297045.html