高溫自補(bǔ)償潤滑的熱力耦合驅(qū)動(dòng)模型及成膜機(jī)理研究
[Abstract]:Microporous high temperature self-compensation lubricating composite is a new type of self-lubricating composite material, which is prepared by melting melt composite solid lubricant into microporous matrix under vacuum pressure. At high temperature, the solid lubricant stored in the pore of the lubricant can form a lubricating film at the friction interface due to the effect of friction heat and stress, so that the self-lubricating function can be realized. Its tribological properties depend on the amount of precipitation and composition of the composite solid lubricant. Therefore, it is of great significance to establish a thermal-mechanical coupling drive model and study the precipitation mechanism and film formation mechanism of solid lubricant for the design and preparation of microporous high-temperature self-compensation lubricating composites. Based on the theory of spherical filling in porous media and the characteristics of micropore structure of high temperature self-compensating lubricating materials, the cell body structure model is established, and the temperature field and stress field of the cell body model are calculated according to the thermo-mechanical coupling problem in the friction process. According to the driving force of lubricant precipitation, the thermoelastic theory is used to establish the thermo-mechanical coupling driving model, and the influence factors such as ambient temperature, friction heat and friction force are analyzed. The transient thermal analysis and thermo-mechanical coupling analysis of infiltrated high-temperature self-compensation lubricating materials were completed by ANSYS Workbench. The temperature field, stress field distribution and related reasons were obtained during friction process. The temperature and stress of lubricant and matrix were analyzed, and the temperature and stress of lubricant and matrix were analyzed. The influence of different factors (heating temperature, friction heat, hole deformation extrusion pressure) on the driving force of lubricant is discussed. The simulation results show that the heating temperature has gain effect on the driving force, the effect of friction heat should be taken into account after continuous heating, and the friction heat has a significant promoting effect on the driving force of lubricant compared with the heating temperature. However, the effect of pore deformation on extrusion stress is relatively small, and lubricant precipitates to the friction interface under the combined action of heating temperature, frictional thermal-stress and deformation extrusion. Based on the matching and mutual solubility of lubricant and matrix material, the composition design of solid lubricant was carried out by wetting test and empirical formula analysis. The optimum ratio is: 1 / Pb65Sn35 12~18%Ag 0.2~0.3%RE (Y2O3), and the infiltrating composite of matrix and lubricant is realized by high frequency electromagnetic induction infiltration process, and the infiltrated M3/2/TiC system high temperature self-lubricating composite is prepared. The friction and wear properties were investigated on a pin disk high temperature friction and wear tester. The wear surface composition, morphology and structure were analyzed by scanning electron microscope (SEM),) photoelectron spectroscopy (EDXA) and X-ray diffractometer (XRD). The results show that during high temperature friction and wear of the infiltrated high temperature self-lubricating composite, the lubricant precipitates to the friction surface through the micropore channel to form a layer of solid lubricating film containing Pb,Sn,Ag,RE and other elements. On the basis of Pb65Sn35-12Ag lubricant, the lubricating property is improved by adding 0.25 RE.The film forming mechanism of high temperature self-compensation lubricating composite is discussed based on SEM surface morphology analysis.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB33
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王鵬;李文斌;;高速磨削電主軸熱-結(jié)構(gòu)耦合有限元分析與仿真[J];機(jī)械設(shè)計(jì)與制造;2016年12期
2 陳百明;張俊喜;郭小汝;龔成功;曹德瑾;張振宇;;高溫金屬基減摩材料的固體潤滑劑的研究進(jìn)展[J];礦山機(jī)械;2016年01期
3 陳新忠;張麗萍;;溫度場對注氣驅(qū)替煤層氣運(yùn)移影響的數(shù)值分析[J];采礦與安全工程學(xué)報(bào);2014年05期
4 韓建偉;魯后國;李華偉;;摩擦生熱的仿真分析[J];汽車工程師;2014年01期
5 郭志成;李長生;唐華;閻逢元;孫建榮;劉金銀子;;Fe-Ni基高溫自潤滑復(fù)合材料摩擦磨損特性研究[J];摩擦學(xué)學(xué)報(bào);2013年03期
6 朱圣宇;王立峰;陳江濤;田雨;畢秦嶺;;寬溫域連續(xù)潤滑的Ni_3Al基自潤滑復(fù)合材料[J];宇航材料工藝;2013年01期
7 王常川;王日初;彭超群;馮艷;韋小鳳;;金屬基固體自潤滑復(fù)合材料的研究進(jìn)展[J];中國有色金屬學(xué)報(bào);2012年07期
8 王硯軍;劉佐民;王守仁;;浸滲型高溫自潤滑金屬陶瓷復(fù)合材料的制備及其性能[J];機(jī)械工程材料;2010年07期
9 曹同坤;高偉;;Al_2O_3/TiC/CaF_2陶瓷的摩擦磨損及自潤滑膜的形成機(jī)理研究[J];材料工程;2009年09期
10 李燕;盧平;劉佐民;;顆粒增強(qiáng)復(fù)合材料熱膨脹系數(shù)預(yù)測模型的研究[J];武漢理工大學(xué)學(xué)報(bào);2009年17期
相關(guān)博士學(xué)位論文 前5條
1 時(shí)來鑫;Mg-Al合金熔體在三種常用增強(qiáng)體陶瓷基板上的潤濕[D];吉林大學(xué);2013年
2 燕松山;高溫發(fā)汗?jié)櫥瑢又苽浼捌涔δ芸刂茩C(jī)理研究[D];武漢理工大學(xué);2011年
3 王硯軍;高溫發(fā)汗自潤滑金屬陶瓷的制備、表征及摩擦學(xué)特性研究[D];武漢理工大學(xué);2008年
4 楊麗穎;高溫自潤滑TiAl基合金的制備及其性能研究[D];武漢理工大學(xué);2008年
5 張一兵;高溫發(fā)汗?jié)櫥臒狎?qū)動(dòng)機(jī)理及其穩(wěn)定性研究[D];武漢理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前2條
1 張杰;激光熔覆二硫化鉬/氟化物復(fù)相自潤滑涂層及摩擦磨損學(xué)特性[D];上海工程技術(shù)大學(xué);2015年
2 王莽;鎳鋁基自潤滑復(fù)合材料的摩擦學(xué)性能研究[D];武漢理工大學(xué);2013年
,本文編號(hào):2256395
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2256395.html