金納米線拉伸力學(xué)行為和變形機(jī)制的模擬研究
[Abstract]:As one of the main components of one-dimensional nanomaterials, gold nanowires have broad application prospects in nanostructured devices and biosensors due to their good chemical stability, high conductivity, high surface activity and excellent biocompatibility. In this paper, molecular dynamics method is used to study one-dimensional gold nanowires. The main conclusions are as follows: (1) The elastic modulus of single crystal gold nanowires is not affected by the diameter, but by the crystal orientation. The order of elastic modulus of different crystal orientations is E [111] E [110] E100, and [100] crystal. The yielding strain and stress of nanowires are 2.65 times and 2.54 times higher than those of other nanowires. The strain rate has little effect on the elastic modulus, yield strength and fracture strain of gold nanowires at low and moderate tensile strain rates, but at high strain rates. The elastic modulus of the twin-structured gold nanowires is not affected by the twin spacing, but the yield stress is greatly affected by the twin spacing. With the increasing of the twin spacing, the yield stress of the nanowires decreases continuously. When the twin spacing reaches a certain value, the yield stress yields to equilibrium and does not change. The stress-strain curves exhibit periodic "zigzag" characteristics at low strain rates (e 1.0 x 109 s-1), and finally fracture. The plastic deformation is mainly caused by slip, and dislocations are produced at each yield stage. At moderate strain rate (1.0 The stress-strain curves show a distinct bulge at the initial elastic deformation stage, a "wave-like" fluctuation at the plastic deformation stage, and finally fracture. The plastic deformation is caused by amorphous deformation. The system rapidly transforms into disordered amorphous atoms during the yield process, and the fracture strain is as high as 435.89%, showing superplasticity. The plastic deformation mechanism of homocrystalline nanowires at low strain rates is caused by slip. [100] There are four slip systems in the tensile plastic deformation of nanowires, but only one slip plane plays a major role in the plastic deformation. [110] In the tensile plastic deformation of nanowires, the stacking fault spacing increases with the increase of strain. (4) The twin spacing has a great influence on the yield stress of gold nanowires. When TBS2 nm (twin boundary spacing) is used, the dislocation and twin face act together to cause the twin in the necking region of the nanowires. When TBS2 nm, the nanowires are softened by two mechanisms. (5) The softening of twin nanowires includes two mechanisms. When 2 nm TBBS 5 nm, the twin boundary can not effectively prevent the dislocation slip. When the dislocation accumulates at the twin surface to a certain extent, the dislocation breaks the twin surface. Restriction, dislocation as the source of generation in the adjacent twin block again generated dislocations, and accompanied by partial decomposition and disappearance of incomplete dislocations, nanowires failed to form stress concentration prematurely, fracture strain is relatively large; when TBS5 nm, dislocation slip makes the twin surface of nanowires destroyed, forming a shear band, disordered atoms piled up in the twin surface. The fracture strain of nanowires decreases with product.
【學(xué)位授予單位】:長安大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB383.1;O341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林小春;;中美科學(xué)家首次使硅納米線的彈性接近理論極限[J];科學(xué)觀察;2016年04期
2 孫寅璐;高亞軍;孫倩;趙健偉;;基于分子動力學(xué)方法的孿晶銀納米線拉伸形變模擬[J];物理化學(xué)學(xué)報;2015年10期
3 孫倩;楊熊博;高亞軍;趙健偉;;不同孿晶界密度銀納米線拉伸形變行為的分子動力學(xué)模擬[J];物理化學(xué)學(xué)報;2014年11期
4 ZHANG JunJie;XU FangDa;YAN YongDa;SUN Tao;;Detwinning-induced reduction in ductility of twinned copper nanowires[J];Chinese Science Bulletin;2013年06期
5 魯紅權(quán);張俊乾;范鏡泓;;不同晶向金屬納米線拉伸力學(xué)性能分子動力學(xué)研究[J];固體力學(xué)學(xué)報;2011年05期
6 ;金納米線心臟補丁可提高心肌導(dǎo)電性[J];北京生物醫(yī)學(xué)工程;2011年05期
7 侯兆陽;劉麗霞;劉讓蘇;田澤安;;Al-Mg合金熔體快速凝固過程中微觀結(jié)構(gòu)演化機(jī)理的模擬研究[J];物理學(xué)報;2009年07期
8 周冰;;淺談納米材料的化學(xué)制備方法[J];黑龍江科技信息;2008年07期
9 劉麗強(qiáng);彭池芳;金征宇;胥傳來;;納米金技術(shù)的發(fā)展及在食品安全快速檢測中的應(yīng)用[J];食品科學(xué);2007年05期
10 黃丹;章青;卓家壽;;納米金屬絲拉伸破壞及其應(yīng)變率效應(yīng)[J];固體力學(xué)學(xué)報;2006年S1期
相關(guān)博士學(xué)位論文 前1條
1 李小凡;納米結(jié)構(gòu)Mo與FeAl單軸拉伸特性的分子動力學(xué)模擬[D];湖南大學(xué);2011年
相關(guān)碩士學(xué)位論文 前3條
1 楊曉丹;金屬鎢中級聯(lián)碰撞的分子動力學(xué)模擬研究[D];湖南大學(xué);2014年
2 唐旭濤;微米級銅纖維的微拉伸試驗與尺度效應(yīng)研究[D];華中科技大學(xué);2012年
3 夏豫之;孿晶金納米線的塑性變形控制機(jī)理研究[D];大連理工大學(xué);2011年
,本文編號:2202009
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2202009.html