微槽群結(jié)構(gòu)對(duì)微納復(fù)合結(jié)構(gòu)熱沉表面汽泡動(dòng)力學(xué)行為影響的可視化研究
[Abstract]:The micro-groove group heat sink with micro-nano composite structure is formed by coating a layer of nano-coating on the surface of micro-groove group heat sink. The structure has the characteristics of both micro-scale structure and nanostructure, so the micro-nano composite structure has more special heat transfer characteristics. The study of phase change heat transfer in heat sink of microgroove group with micro-nano composite structure is of great academic value to the development of phase change heat transfer theory on micro-nano scale. The research provides a theoretical basis for the design of heat dissipation system of electronic components under high heat flux and has important practical application value to promote the development of electronic industry in China. In this paper, a high speed photograph is used to visualize the bubble dynamics of the heat sink surface of different microgrooves with different vertical microgrooves. Rectangular microgrooves with different sizes were carved on the borosilicon glass plate by slicing process, and then the surface of the microgrooves was coated with a layer of titanium nano-coating with thickness of 250nm by magnetron sputtering to form a group of microgrooves with micro-nano composite structure. Distilled water was used as the working medium of the experiment. The temperature of distilled water was controlled at saturation temperature by heating and temperature control system, and then the micro-nano composite structure was heated by ceramic heating sheet. The bubble dynamics of micro / nano composite structure heat sink was observed by high speed photography. The temperature of thermal sink back and PTFE insulation of micro / nano composite structure was collected by data acquisition instrument. The images taken during the experiment are played back and saved by the software PCC2.3 of high-speed photography instrument, and the image marginalization of MATLAB is further processed to calculate the equivalent diameters of each stage in the process of bubble growth. In this paper, the shooting rate of the high speed camera is set to 6000 frames / s, and the interval between each two frames is 0.17ms. by checking the number of image frames in the bubble cycle, the bubble period and the waiting time of the bubble are obtained. According to the experimental results, it is found that under the same heat flux, the bubble equivalent diameter, bubble cycle and bubble waiting time decrease with the increase of the ratio of microgroove depth to width in the same depth micro-nano composite structure heat sink. In the heat sink of micro-nano composite structure with the same microgroove group structure, the equivalent diameter decreases with the increase of heat flux when the bubble ruptures, and at the same heat flux density, Compared with the equivalent diameter and the bubble period of the bubble rupture in the heat sink of the microgroove group without nano-coating, the equivalent diameter and the bubble period of the micro-nano composite structure with the same microgroove group structure are smaller. Both the bubble period and the waiting time of the bubble decrease with the increase of the heat flux, which is independent of the change of the microgroove size and the existence of nano-coating on the surface of the heat sink. The results show that the change of micro-scale structure of micro-groove group with micro-nano composite structure has more significant effect on the dynamic behavior of bubble than that of micro-groove group without nano-coating.
【學(xué)位授予單位】:吉首大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB303
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 欒義軍;胡學(xué)功;王際輝;戴新龍;;微納復(fù)合結(jié)構(gòu)表面汽泡動(dòng)力學(xué)行為可視化研究[J];工程熱物理學(xué)報(bào);2016年10期
2 李小兵;;微納雙重結(jié)構(gòu)表面的接觸角模型及其潤(rùn)濕性研究[J];潤(rùn)滑與密封;2014年01期
3 郭朝紅;胡學(xué)功;唐大偉;;矩形微槽橫截面換熱特性的分析[J];工程熱物理學(xué)報(bào);2011年07期
4 武利媛;胡學(xué)功;唐大偉;;毛細(xì)微槽中汽泡動(dòng)力學(xué)行為可視化研究[J];工程熱物理學(xué)報(bào);2009年07期
5 胡學(xué)功;唐大偉;;豎直毛細(xì)微槽群熱沉中蒸發(fā)液體的干涸特性[J];化工學(xué)報(bào);2007年03期
6 胡學(xué)功,顏曉虹,趙耀華;微槽群蒸發(fā)器在電子芯片冷卻方面的應(yīng)用[J];化工學(xué)報(bào);2005年03期
7 李騰,劉靜;芯片冷卻技術(shù)的最新研究進(jìn)展及其評(píng)價(jià)[J];制冷學(xué)報(bào);2004年03期
相關(guān)博士學(xué)位論文 前3條
1 于東;基于Micro-PIV方法的微槽群熱沉內(nèi)流動(dòng)與傳熱的可視化實(shí)驗(yàn)和理論研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2014年
2 聶雪磊;微槽群結(jié)構(gòu)熱沉內(nèi)流動(dòng)和復(fù)合相變傳熱機(jī)理及應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2012年
3 胡學(xué)功;高性能微槽群相變散熱系統(tǒng)的研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2005年
相關(guān)碩士學(xué)位論文 前5條
1 欒義軍;微納復(fù)合結(jié)構(gòu)表面汽泡動(dòng)力學(xué)行為可視化研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2016年
2 李蘭蘭;微納米結(jié)構(gòu)表面沸騰換熱的實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2013年
3 曹陽(yáng);毛細(xì)微槽群內(nèi)汽泡動(dòng)力學(xué)行為對(duì)三相接觸線影響的實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2011年
4 武利媛;開(kāi)放式毛細(xì)微槽群中汽泡動(dòng)力學(xué)行為的可視化研究[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2009年
5 王際輝;微槽道內(nèi)流動(dòng)沸騰可視化實(shí)驗(yàn)研究與分析[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2006年
,本文編號(hào):2150036
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2150036.html