周期性金屬—介質(zhì)高效寬譜吸波材料的設計與制備
發(fā)布時間:2018-07-03 11:40
本文選題:吸波材料 + 金屬-介質(zhì)。 參考:《太原理工大學》2015年碩士論文
【摘要】:電磁吸波材料在各個領域都有很廣的應用,高效寬譜的吸波材料在太陽能捕獲、光子探測等領域有廣泛的應用。近些年來,一維寬譜吸波材料由于其簡單的結構以及低成本引起了研究者們的關注。 本論文從理論和實驗兩個方面研究了一維層狀金屬-介質(zhì)吸波材料。理論計算方面,根據(jù)轉(zhuǎn)移矩陣理論利用MATLAB軟件編寫程序,利用程序?qū)饘俳橘|(zhì)交替的層狀吸波結構進行性能的模擬計算和優(yōu)化;實驗方面,我們利用電子束蒸發(fā)設備制備了高效寬譜的Ag襯底上Ag納米顆粒與SiO2交替的周期性吸波材料,且其制備方法簡單,光學穩(wěn)定性好。具體研究結論如下: 1.相較于其它模擬軟件,根據(jù)傳輸矩陣理論利用MATLAB編寫的計算層狀吸波材料吸收率的程序計算速度更快,計算結果吻合。通過對不同材料、不同厚度、不同配比的周期性金屬介質(zhì)交替結構的優(yōu)化,得出金屬為W,介質(zhì)為MgF2,介質(zhì)在頂層時的吸收率最優(yōu),在300nm-2100nm波段范圍內(nèi),其總吸收率高達98.1%,且應用在熱光伏中時的品質(zhì)因數(shù)最高。 2.利用電子束蒸發(fā)設備制備了高效、寬譜Ag襯底上Ag納米顆粒與SiO2交替的吸波材料。實驗結果表明小周期時厚Ag納米顆粒層器件的吸收優(yōu)于薄Ag納米顆粒層的器件的吸收,但周期大于3時,情況則相反。當Ag納米顆粒層的名義厚度為5nm時,所獲得的Ag納米顆粒比較小,所以入射光可以穿透所有的周期層,因此增加周期可以增加吸光單元。理論模擬表明不同層處的Ag納米顆粒雜化激發(fā)出了豐富的局域表面等離子體效應,,在可見光波段形成了多個吸收峰,因此拓寬了吸收波段。具有18個周期的器件在300-1100nm波段吸收效率高達96%。因其簡單的制作工藝及優(yōu)異的光學性質(zhì),該器件可用于太陽能捕獲及熱輻射調(diào)控等方面。
[Abstract]:Electromagnetic absorbing materials are widely used in various fields, and high efficiency and wide spectrum absorbing materials are widely used in solar energy capture, photon detection and so on. In recent years, one-dimensional wide-spectrum absorbing materials have attracted much attention due to their simple structure and low cost. In this paper, one-dimensional laminated metal-dielectric absorbing materials are studied theoretically and experimentally. In theory, according to the transfer matrix theory, the MATLAB software is used to compile the program, and the simulation and optimization of the performance of the layered absorbing structure with alternating metal medium are carried out by the program. The high efficiency and wide spectrum Ag substrates have been prepared by electron beam evaporation (EBE) equipment. The periodic absorbing materials of Ag nanoparticles and Sio _ 2 on Ag substrates are characterized by simple preparation method and good optical stability. The specific conclusions are as follows: 1. Compared with other simulation software, the program compiled by MATLAB based on the transfer matrix theory to calculate the absorptivity of layered absorbing materials is faster and the calculation results are in agreement with each other. By optimizing the alternate structure of periodic metal medium with different materials, different thickness and different ratio, it is concluded that the metal is W, the medium is MgF2, and the absorptivity of the medium in the top layer is optimal, in the range of 300nm-2100nm band, The total absorptivity is up to 98.1, and the quality factor is the highest when it is used in thermal photovoltaic. High efficient, wide-spectrum Ag substrates with Ag nanoparticles and Sio _ 2 were prepared by electron beam evaporation (EBE) equipment. The experimental results show that the absorption of thick Ag nanocrystalline layer in small period is better than that of thin Ag nanocrystalline layer, but when the period is greater than 3, the situation is opposite. When the nominal thickness of Ag nanoparticles is 5nm, the Ag nanoparticles obtained are relatively small, so the incident light can penetrate all periodic layers, so increasing the period can increase the absorption units. The theoretical simulation shows that the hybrid of Ag nanoparticles at different layers excites abundant local surface plasma effects and forms multiple absorption peaks in the visible light band, thus widening the absorption band. The absorption efficiency of the device with 18 cycles in the 300-1100nm band is as high as 96. Because of its simple fabrication process and excellent optical properties, the device can be used in solar energy capture and thermal radiation control.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB34
【參考文獻】
相關期刊論文 前3條
1 黃濤,黃英,賀金瑞;吸波材料研究進展[J];玻璃鋼/復合材料;2003年01期
2 邢麗英,劉俊能;電阻漸變型結構吸波材料的研究與發(fā)展[J];航空材料學報;2000年03期
3 黃煜鑌;錢覺時;張建業(yè);;高鐵粉煤灰建筑吸波材料研究[J];煤炭學報;2010年01期
本文編號:2093516
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2093516.html
最近更新
教材專著