天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

SiC粉體表面改性與其在水中分散性能的研究

發(fā)布時間:2018-03-24 06:37

  本文選題:SiC 切入點:表面羥基 出處:《煙臺大學(xué)》2017年碩士論文


【摘要】:SiC是一種用途十分廣泛的無機非金屬材料,直接凝固注模成型是制備高性能SiC材料的最簡捷有效的方法。該方法克服了以往熱壓成型工藝過程中耗能高、后期機加工復(fù)雜、成本昂貴等缺點,但直接凝固注模對SiC粉體漿料提出了苛刻的要求,要求Si C粉體漿料粘度低于1pa.s時,固相體積分?jǐn)?shù)達(dá)到50vol%以上。目前國內(nèi)工業(yè)產(chǎn)品高質(zhì)量SiC水基漿料也遠(yuǎn)無法達(dá)到該性能指標(biāo)。本文對SiC粉體通過酸堿溶液洗滌、加堿熱處理、表面羥基接枝進(jìn)行表面改性,通過測量改性后的SiC粉體表面Si-OH含量、表面元素變化及表面形貌變化,測量水基漿料粘度與固含量,以期制備高固含量低粘度的SiC水基漿料并探究其機理。1、首次使用卡爾-費休法測量SiC粉體表面的Si-OH含量。對比以往表面Si-OH測量方法,該方法RSD值僅為3.8%,其他方法一般超過5%。該方法具有精密度高,易克服外界干擾因素等優(yōu)點,是測量粉體表面Si-OH的一種有效的方法。對平均粒徑約為0.5μm的國產(chǎn)SiC粉體利用不同酸堿溶液進(jìn)行表面清洗后,測量酸溶液處理導(dǎo)致Si C粉體表面硅羥基濃度增大,在2mol/L HCl處理后,羥基含量升至最高值0.18%,較原料含量上升28%。堿溶液處理導(dǎo)致SiC粉體表面羥基濃度降低,降低至0.11%,較原料含量下降約21%。表面元素分析顯示,表面酸堿洗滌均會降低SiC粉體表面碳硅比。結(jié)果顯示2mol/L HCl處理后變化最為明顯,表面C元素含量下降29%,表面Si元素含量升高44.1%。表面碳硅比由原料的80.4/19.6變?yōu)?7.34/42.66。固定固含量為10.7%,酸堿處理過SiC粉體漿料粘度均低于原料SiC粉體漿料粘度。在pH值約為8的環(huán)境中,NaOH處理過的SiC粉體漿料粘度最低為1.41mpa.s,遠(yuǎn)小于原料粉體漿料的粘度。結(jié)果顯示酸堿處理均會改善SiC粉體水基漿料分散性。酸處理有效改善SiC粉體表面元素含量,利于SiC粉體漿料分散。堿處理有效減少SiC粉體表面羥基含量,從而提高SiC粉體漿料分散性。測量相同質(zhì)量分?jǐn)?shù)下的SiC漿料粘度來評價酸堿處理對SiC粉體漿料的影響,得出堿溶液處理最能導(dǎo)致SiC粉體分散性變優(yōu)的結(jié)論。2、探究加堿加熱處理Si C粉體表面改性效果的研究,固定SiC與NaOH質(zhì)量比,結(jié)果顯示改變加熱溫度會引起表面形貌變化,照片顯示200-250℃會最顯著引起SiC粉體顆粒棱角鈍化。250℃下pH值約為13的溶液中分散性最好,質(zhì)量分?jǐn)?shù)為50%,粘度值僅為35.6mpa.s,而原料SiC粉體漿料粘度為905mpa.s。加熱溫度改變還會引起SiC粉體表面元素比變化,有效去除表面多余的C元素。改變加堿熱處理表面改性堿濃度會引起SiC粉體表面O元素含量降低,SiC與NaOH質(zhì)量比為1/0.5時,表面氧元素含量降至最低,約為1.08%,約降至原料水平的42%。SiC與NaOH質(zhì)量比變化會引起表面羥基濃度變化,SiC與NaOH質(zhì)量比為1/0.5時,SiC粉體表面硅羥基濃度降至0.05%,較原料下降約45%。加堿加熱表面改性會顯著影響SiC粉體表面羥基濃度,表面氧元素含量,表面碳硅比,最終通過加堿熱處理改性,可有效改善SiC粉體漿料分散性。3、無水條件下對SiC粉體表面羥基與二元羧酸的反應(yīng)進(jìn)行表面接枝改性,通過原料SiC粉體和加堿加熱改性后SiC粉體分別與乙二酸接枝,分別制備得到粘度1pa.s下,固含量分別為46vol%、41vol%的漿料。結(jié)果顯示直接用原料接枝可以制備效果更好的漿料。對SiC粉體與乙二酸接枝制備得到粘度1pa.s,固含量達(dá)到46vol%的漿料。通過SiC粉體與丙二酸接枝制備得到粘度為1pa.s,固含量達(dá)到52vol%的漿料。通過對SiC粉體與丁二酸接枝制備得到粘度1pa.s,固含量達(dá)到45vol%的漿料。通過對SiC粉體與己二酸接枝制備得到粘度1pa.s,固含量達(dá)到46.2vol%的漿料。通過對SiC粉體與庚二酸接枝制備得到粘度1pa.s,固含量達(dá)到42vol%的漿料。通過對電位滴定法測量得到乙二酸、丙二酸、丁二酸、己二酸、庚二酸接枝率分別為9.11%,15.18%,5.49%,23.7%,14.58%,結(jié)合探究水基漿料在不同pH值水基分散介質(zhì)中的pH值,評價得到改性后Si C粉體漿料流動性最佳者為接枝丙二酸,改性后粉體在TMAH調(diào)節(jié)pH=13分散介質(zhì)中固相體積分?jǐn)?shù)可達(dá)52vol%,已經(jīng)初步可以達(dá)到注模成型的基本要求。本文通過電位滴定定量分析接枝率,接枝率數(shù)據(jù)的得出有力證明接枝反應(yīng)的發(fā)生,同時從側(cè)面驗證了表面Si-OH的存在和表面Si-OH的反應(yīng)活性。
[Abstract]:SiC is a non-metallic material widely used inorganic, direct coagulation casting is the most simple and effective way of preparing high performance SiC materials. The method overcomes the disadvantages of high energy consumption in hot forming process, complex post machining, disadvantages of high cost, but the direct coagulation casting of SiC powder the slurry demanding requirements, Si C powder slurry viscosity is less than 1pa.s, the solid volume fraction is more than 50vol%. The current domestic industrial products of high quality SiC slurry is far unable to meet the performance index. The SiC powder by alkali solution washing, alkali heat treatment, surface hydroxyl groups grafted on surface modification by measuring the change of the content of Si-OH on the surface of SiC powder after the change of surface elements and the surface morphology, measurement of slurry viscosity and solid content, in order to SiC water-based slurry for preparing high solid content and low viscosity, and explore The mechanism of.1, Carle - Si-OH content measurement fee Hugh surface of SiC powder used for the first time. In contrast to the conventional surface Si-OH measurement method, the method of RSD value is only 3.8%, other than 5%. method this method has the advantages of high precision, easy to overcome the external interference factors, is an effective method for Si-OH surface measurement powder. The average particle size is about 0.5 m domestic SiC powder by cleaning the surface of different acid solution after acid treatment resulted in Si measurement of C powder surface silanol concentration increased at 2mol/L after HCl treatment, hydroxyl content rose to the highest value of 0.18%, compared with the raw material increased the content of 28%. alkaline solution treatment result SiC powder surface hydroxyl concentration decreased, decreased to 0.11%, compared with the raw material content decreased about 21%. surface element analysis showed that the surface of acid alkali washing will reduce SiC powder surface carbon silicon ratio. The results showed that 2mol/L HCl treatment after the most obvious change, table C element content decreased 29%, the content of Si is higher than that of the surface by raw material 80.4/19.6 into 57.34/42.66. fixed solid content is 10.7% 44.1%. the surface of silicon carbon, acid treated SiC powder slurry viscosity was lower than that of SiC powder material slurry viscosity. The pH value is about 8 of the environment, NaOH treated SiC powder the viscosity of the slurry for a minimum of 1.41mpa.s, far less than the raw powder slurry viscosity. The results showed that acid treatment will improve SiC powder slurry dispersion. Acid treatment can effectively improve the surface element content of SiC powder, SiC powder for slurry. The alkali treatment can effectively reduce SiC powder surface hydroxyl content, so as to improve the dispersion of SiC the SiC powder slurry. The slurry viscosity measurement of the same mass fraction to evaluate the effect of acid treatment on SiC powder slurry, the alkaline solution treatment can lead to the most SiC powder dispersion became excellent conclusion.2, explore alkali heat treatment of Si Study on C powder surface modification effect, fixed SiC and NaOH mass ratio, results show that changing the heating temperature will cause the change of the surface morphology, photo shows 200-250 degrees will most significantly induced SiC powder passivation of edges.250 DEG pH value is about 13 of the best dispersion solution, mass fraction is 50%, viscosity the value is only 35.6mpa.s, and SiC powder material slurry viscosity of 905mpa.s. heating temperature change will cause the surface of SiC powder element ratio change, effectively remove excess surface elements C. Change the alkali heat treatment of surface modification of alkali concentration will cause the surface of SiC powder O element content decreased, SiC and NaOH ratio of 1/0.5 when the surface oxygen content to a minimum, about 1.08%, about the level of 42%.SiC and NaOH to the raw material quality will cause the surface hydroxyl concentration ratio, SiC and NaOH mass ratio was 1/0.5, SiC powder surface silanol concentration decreased to 0.05%, compared with the original The material decreased about 45%. alkali heating surface modification of SiC powder surface hydroxyl concentration will significantly influence the surface, oxygen content, surface carbon and silicon ratio, eventually modified by alkali heat treatment, can effectively improve the dispersion of.3 SiC powders, surface modification reaction of hydroxy SiC powder surface and two yuan carboxylic acid under anhydrous conditions, by raw material SiC powder and alkali heating modified SiC powder and oxalic acid were prepared by grafting, 1pa.s viscosity, solid content were 46vol%, 41vol% of the slurry. The results showed that the direct use of raw materials can be grafted slurry preparation better. On SiC powder. With oxalic acid was prepared by grafting 1pa.s viscosity, solid content of 46vol% slurry. By SiC powder and malonic acid was prepared by grafting viscosity 1pa.s, solid content of 52vol% slurry. By SiC powder and succinic acid was prepared by grafting the viscosity of 1pa.s, solid content The amount of up to 45vol%. The SiC powder slurry and adipic acid was prepared by grafting the viscosity of 1pa.s, solid content of 46.2vol% slurry. By SiC powder and Pimelic acid was prepared by grafting the viscosity of 1pa.s, solid content of 42vol% slurry. By potentiometric titration measured B two malonic acid, succinic acid. Succinic acid, adipic acid, Pimelic acid grafting rate were 9.11%, 15.18%, 5.49%, 23.7%, 14.58%, combined with the research of water-based slurry in different pH aqueous dispersion medium pH value, the evaluation of modified Si C powder slurry fluidity for the best grafting malonic acid modified powder in TMAH regulation of pH=13 the dispersion medium in the solid volume fraction is 52vol%, has been initially can meet the basic requirements of injection molding. This paper by potentiometric titration quantitative analysis of grafting ratio, grafting rate data obtained strong evidence of reaction, and verified from the side table The presence of the surface Si-OH and the reactive activity of the surface Si-OH.

【學(xué)位授予單位】:煙臺大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ163.4;TB383.3

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 鐵健;鐵生年;;微波酸堿處理微納米碳化硅粉體雜質(zhì)去除工藝研究[J];人工晶體學(xué)報;2016年09期

2 王永明;畢文娟;李家柱;殷軍港;;酸堿處理對SiC粉體表面性質(zhì)的影響研究[J];硅酸鹽通報;2016年05期

3 趙鵬;陳愛城;戴勇;關(guān)懷民;童躍進(jìn);;二氧化硅表面硅羥基含量的測定方法[J];廣州化工;2016年02期

4 周小英;;硅微粉的濕氧化損耗和表面鈍化保護(hù)研究[J];化學(xué)世界;2015年04期

5 趙娟;宋麗岑;王瑞雨;高原;劉惠濤;;SiC粉體預(yù)處理對漿料流變性能的影響[J];硅酸鹽通報;2014年11期

6 黃增芳;瞿曉岳;馬軍現(xiàn);;乳液聚合制備SiO_2/PMMA-DMEMA亞微米復(fù)合微球及其表征[J];高分子材料科學(xué)與工程;2014年01期

7 劉亞虎;蔡雪原;朱延超;張琳嬌;楊建紅;;納米碳化硅顆粒的團(tuán)聚及分散的研究進(jìn)展[J];材料工程;2013年09期

8 宋麗岑;潘燕飛;劉惠濤;高原;;SiC粉體的微觀差異性及其漿料的流變性質(zhì)[J];中國粉體技術(shù);2013年02期

9 肖勇;吳孟強;袁穎;龐翔;陳黎;;無機微/納米粒子表面包覆改性技術(shù)[J];電子元件與材料;2011年09期

10 王海波;;SiC表面的氫等離子體處理技術(shù)[J];黑龍江科技信息;2011年23期

相關(guān)會議論文 前2條

1 馬建軍;譚奧嚴(yán);吳瀾爾;;固體碳源在碳化硅漿料中的分散[A];中國顆粒學(xué)會第六屆學(xué)術(shù)年會暨海峽兩岸顆粒技術(shù)研討會論文集(上)[C];2008年

2 李衛(wèi)紅;周細(xì)應(yīng);徐洲;周細(xì)應(yīng);;納米顆粒的分散穩(wěn)定性及其評估方法[A];第十五屆華東地區(qū)熱處理年會暨華東地區(qū)熱處理年會三十周年紀(jì)念活動論文摘要集[C];2006年

相關(guān)碩士學(xué)位論文 前9條

1 趙娟;碳化硅粉體表面處理方法及其漿料流變性研究[D];煙臺大學(xué);2016年

2 茆福煒;SiC微粉提純工藝研究[D];蘇州大學(xué);2014年

3 李世娟;SiC表面碳團(tuán)簇及其鈍化的第一性原理研究[D];大連理工大學(xué);2014年

4 宋麗岑;高固含量低粘度碳化硅穩(wěn)定漿料的制備及流變特性研究[D];煙臺大學(xué);2014年

5 溫源;SiC表面鈍化的第一性原理熱力學(xué)研究[D];大連理工大學(xué);2013年

6 楊亮亮;超細(xì)二氧化硅表面接枝超支化聚合物研究[D];武漢工程大學(xué);2012年

7 李星;半導(dǎo)體制造用高純超細(xì)碳化硅陶瓷粉體表面改性研究[D];青海大學(xué);2011年

8 柒祥芝;二氧化鈦表面接枝改性及其復(fù)合材料的研究[D];華東理工大學(xué);2011年

9 李歡歡;高性能碳化硅的成型及燒結(jié)工藝研究[D];北京交通大學(xué);2009年

,

本文編號:1657177

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1657177.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9862e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
一区二区在线激情视频| 国产免费操美女逼视频| 欧美国产日产在线观看| 亚洲精品蜜桃在线观看| 激情内射日本一区二区三区| 亚洲一区二区久久观看| 日本东京热视频一区二区三区| 免费高清欧美一区二区视频| 国产91麻豆精品成人区| 亚洲国产精品久久精品成人| 91人妻久久精品一区二区三区| 国产一区二区精品高清免费 | 国产精品内射婷婷一级二级| 国产精品不卡高清在线观看| 91香蕉国产观看免费人人| 韩国日本欧美国产三级| 精品欧美日韩一区二区三区| 国产午夜福利不卡片在线观看| 国产99久久精品果冻传媒| 婷婷色网视频在线播放| 日本国产欧美精品视频| 久七久精品视频黄色的| 久久机热频这里只精品| 亚洲第一香蕉视频在线| 午夜福利国产精品不卡| 不卡视频在线一区二区三区| 无套内射美女视频免费在线观看| 欧美日韩国内一区二区| 久一视频这里只有精品| 少妇成人精品一区二区| 国产不卡视频一区在线| 日韩精品一区二区三区四区 | 在线日韩中文字幕一区| 久久天堂夜夜一本婷婷| 成人亚洲国产精品一区不卡| 好吊色欧美一区二区三区顽频| 初尝人妻少妇中文字幕在线| 久久精品国产99国产免费| 亚洲中文字幕亲近伦片| 日本人妻免费一区二区三区| 亚洲中文字幕三区四区|