新型Ga摻雜ZnO基透明導(dǎo)電薄膜的制備與研究
本文選題:透明導(dǎo)電薄膜 切入點(diǎn):HGZO 出處:《浙江大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:摻雜ZnO薄膜中,Ga摻雜ZnO (GZO)透明導(dǎo)電薄膜可以用于各種電子器件,例如太陽(yáng)能電池、平板顯示器、光伏器件等,是最有前景的透明導(dǎo)電氧化物(TCO)之一。與別的GZO薄膜沉積技術(shù)相比,由于磁控濺射技術(shù)更具有優(yōu)勢(shì),例如高的沉積速率、制備過(guò)程的穩(wěn)定性和可靠性、并能在大面積襯底上制備高質(zhì)量薄膜,該技術(shù)是制備GZO最廣泛的方法。為了將GZO透明導(dǎo)電薄膜應(yīng)用于有機(jī)太陽(yáng)能電池、有機(jī)發(fā)光二極管(LED)及柔性光電器件等,必須低溫下制備GZO透明導(dǎo)電薄膜。然而在室溫下很不容易獲得兼具良好的導(dǎo)電性能及透光性能的GZO薄膜。為了綜合提高GZO基透明導(dǎo)電薄膜的電學(xué)及光學(xué)性能,我們采用各種制備技術(shù)及各種結(jié)構(gòu)的薄膜,研究了其性能。我們的主要工作包括以下內(nèi)容:1.在室溫下,在Ar+H2混合氣氛的情況下采用射頻磁控濺射方法制備了HGZO透明導(dǎo)電薄膜。為了在實(shí)驗(yàn)次數(shù)較少的情況下,獲得較好的結(jié)果,我們通過(guò)正交實(shí)驗(yàn)設(shè)計(jì)方法研究了H2對(duì)Ar的分壓比、濺射功率、濺射壓強(qiáng)、濺射時(shí)間對(duì)HGZO透明導(dǎo)電薄膜的平均透射率、方塊電阻及性能指數(shù)的影響。通過(guò)極差分析確定最影響薄膜性能的參數(shù),而得到最佳生長(zhǎng)條件。最佳條件下制備得到的HGZO透明導(dǎo)電薄膜的性能指數(shù)為33.94×10-3 Ω-1,即最低方塊電阻為10.62 Ω/sq (ρ=3.40×10-4Ωcm)、最高可見(jiàn)光透射率為90.03%。這能夠滿足器件應(yīng)用的要求。2.為了克服(GZO/Cu薄膜/GZO的低透射率的問(wèn)題,我們通過(guò)電子束蒸發(fā)沉積的Cu柵格與通過(guò)射頻磁控濺射沉積的GZ0結(jié)合起來(lái),在室溫下制成了GZO/Cu柵格/GZO三明治結(jié)構(gòu)薄膜,研究其透明電極的電學(xué)及光學(xué)性能。對(duì)GZO/Cu柵格/GZO三明治結(jié)構(gòu)多層薄膜的透射率與方塊電阻的計(jì)算值與實(shí)驗(yàn)中得到的數(shù)值相似。Cu柵格的間距為1mm的情況下,獲得最高性能指數(shù)為5.18×10-3Ω-1,此時(shí)透射率與電阻率分為82.72%與2.17×10-4Ωcm。同理,我們?cè)谑覝叵轮苽淞薌ZO/Cu柵格兩層透明導(dǎo)電薄膜,研究了其透明電極的電學(xué)及光學(xué)性能。Cu柵格的間距為1mm的情況下,獲得最高性能指數(shù)為6.19×10-3Ω1,此時(shí)透射率與電阻率分為83.74%與1.10×10-4Ωcm。該兩層結(jié)構(gòu)透明電極的性能比GZO/Cu柵格/GZO三明治結(jié)構(gòu)透明電極的性能更好。這種具有較好的透射率與電阻率的多層與兩層透明導(dǎo)電薄膜在薄膜太陽(yáng)能電池領(lǐng)域有很好的應(yīng)用前景。3.在室溫下,在polycarbonate(PC)襯底上采用直流磁控濺射技術(shù)沉積GZO透明導(dǎo)電薄膜。通過(guò)X光衍射(XRD)分析與基片曲率法研究了對(duì)薄膜的殘余應(yīng)力的薄膜厚度與濺射功率的影響。當(dāng)厚度為225 nm、濺射功率為140 W的時(shí)候,我們獲得最大的晶粒尺寸及最小的壓縮應(yīng)力。通過(guò)獨(dú)立的兩種薄膜壓縮應(yīng)力測(cè)定方法,XRD法和基片曲率法,印證了上述的研究結(jié)果。通過(guò)實(shí)驗(yàn),我們發(fā)現(xiàn)優(yōu)化濺射參數(shù),比如濺射功率、濺射時(shí)間(與薄膜厚度有關(guān)),在室溫生長(zhǎng)在有機(jī)襯底上的GZ0薄膜能夠有效地釋放應(yīng)力。
[Abstract]:Ga doped ZnO thin films can be used in various electronic devices, such as solar cells, flat panel displays, photovoltaic devices, etc. TCO is one of the most promising transparent conductive oxides. Compared with other GZO thin film deposition techniques, the magnetron sputtering technique has more advantages, such as high deposition rate, stability and reliability of the preparation process. High quality thin films can be prepared on large area substrates. This technique is the most widely used method to fabricate GZO. In order to apply GZO transparent conductive thin films to organic solar cells, organic light-emitting diodes (LEDs) and flexible optoelectronic devices, etc. GZO transparent conductive thin films must be prepared at low temperature. However, it is not easy to obtain GZO thin films with good conductivity and light transmittance at room temperature. In order to improve the electrical and optical properties of GZO based transparent conductive films, We have studied the properties of thin films with various preparation techniques and structures. Our main work includes the following: 1. At room temperature, HGZO transparent conductive thin films were prepared by RF magnetron sputtering in ar _ 2 mixed atmosphere. In order to obtain better results under less experimental times, we studied the partial pressure ratio of H _ 2 to ar by orthogonal experimental design. The effects of sputtering power, sputtering pressure and sputtering time on the average transmittance, square resistance and performance index of HGZO transparent conductive films were studied. The optimum growth conditions were obtained. The performance index of the transparent conductive HGZO thin films was 33.94 脳 10 ~ (-3) 惟 -1, i.e., the lowest square resistance was 10.62 惟 / r ~ (-1) sq (蟻 ~ (3.40) 脳 10 ~ (-4) 惟 cm ~ (-1)), and the highest transmittance of visible light was 90.03 / cm ~ (-1). The problem of low transmittance of GZO / Cu / / GZO films is overcome. We have combined the Cu grid deposited by electron beam evaporation with the GZ0 deposited by RF magnetron sputtering to fabricate the GZO/Cu grid / GZO sandwich structure film at room temperature. The electrical and optical properties of the transparent electrode were studied. The calculated values of the transmissivity and the square resistance of the multilayer film with GZO/Cu lattice / GZO sandwich structure were similar to the calculated values obtained in the experiment. The spacing of the Cu grid was 1 mm. The highest performance index is 5.18 脳 10-3 惟 -1, and the transmittance and resistivity are 82.72% and 2.17 脳 10-4 惟 cm. At room temperature, we have prepared two transparent conductive films with GZO/Cu grid. The electrical and optical properties of the transparent electrode and the distance between the grids of Cu and Cu are studied. The highest performance index is 6.19 脳 10 ~ (-3) 惟 ~ (-1), and the transmittance and resistivity are 83.74% and 1.10 脳 10 ~ (-4) 惟 cm ~ (-1) respectively. The performance of the two-layer transparent electrode is better than that of the GZO/Cu grid / GZO sandwich transparent electrode. The multilayer and two-layer transparent conductive thin films have good application prospect in the field of thin film solar cells. GZO transparent conductive thin films were deposited on polycarbonate (PC) substrates by DC magnetron sputtering. The effects of film thickness and sputtering power on the residual stress of the films were studied by X-ray diffraction (XRD) and substrate curvature method. Nm, when the sputtering power is 140 W, The maximum grain size and the minimum compressive stress are obtained. The above results are confirmed by two independent thin film compression stress measurement methods: XRD and substrate curvature. Through experiments, we find that the sputtering parameters are optimized. For example, sputtering power, sputtering time (depending on the thickness of the film), GZ0 films grown on organic substrates at room temperature can effectively release the stress.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O614.241;TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吉崎友紀(jì);梁兆權(quán);;透明導(dǎo)電薄膜[J];國(guó)外塑料;1988年01期
2 林毅;宋鸝;陳奇;陸劍英;李會(huì)平;;有機(jī)-無(wú)機(jī)透明導(dǎo)電薄膜的研究進(jìn)展[J];材料導(dǎo)報(bào);2005年11期
3 汝淮;;帝人推出新型透明導(dǎo)電薄膜[J];國(guó)外塑料;2010年08期
4 ;集成柔性高透明導(dǎo)電薄膜技術(shù)[J];電腦與電信;2011年09期
5 胡旭偉;;透明導(dǎo)電薄膜制作技術(shù)發(fā)展[J];今日印刷;2012年08期
6 劉曉菲;王小平;王麗軍;楊燦;王子鳳;;透明導(dǎo)電薄膜的研究進(jìn)展[J];激光與光電子學(xué)進(jìn)展;2012年10期
7 馬冀君;李健;耿宏章;王寧;張念一;胡曉燕;;通過(guò)噴涂的方法使用單壁碳納米管制備柔性透明導(dǎo)電薄膜[J];金屬功能材料;2013年02期
8 李春鴻;;透明導(dǎo)電薄膜及其應(yīng)用[J];儀表材料;1979年05期
9 李春鴻;姜克斌;;透明導(dǎo)電薄膜的制備及其組成分析[J];儀表材料;1983年03期
10 王建恩,王運(yùn)濤,王軍,張兵臨,何金田,,張艷蘭;三氧化二銦基透明導(dǎo)電薄膜光、電特性的研究[J];功能材料;1995年02期
相關(guān)會(huì)議論文 前10條
1 蔡s
本文編號(hào):1607172
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1607172.html