膠黏復(fù)合材料導(dǎo)熱性能的數(shù)值模擬
本文選題:ANSYS 切入點(diǎn):導(dǎo)熱復(fù)合材料 出處:《杭州電子科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著電子產(chǎn)品散熱問題越來越突出,具有優(yōu)良導(dǎo)熱性能的膠黏復(fù)合材料已成為研究的熱點(diǎn)。本文通過VC++,ANSYS和MATLAB聯(lián)合編程設(shè)計(jì)了一種參數(shù)化有限元分析方法,實(shí)現(xiàn)了膠黏復(fù)合材料導(dǎo)熱性能的數(shù)值模擬。以AlN/EP導(dǎo)熱膠黏復(fù)合材料為研究實(shí)例,通過比較復(fù)合材料導(dǎo)熱率的模擬值與實(shí)驗(yàn)值驗(yàn)證了該方法的可靠性。并借助有限元分析方法探究了填料粒子的空間分布、粒徑大小、不同粒徑配比、粒子形狀對膠黏復(fù)合材料導(dǎo)熱性能的影響。具體研究內(nèi)容如下:在網(wǎng)狀分布、隨機(jī)分布和均勻分布這三種粒子空間分布中,網(wǎng)狀分布體系中的粒子容易聚集形成導(dǎo)熱網(wǎng)鏈,它對填充體系的導(dǎo)熱率影響最大。其他空間分布體系因?yàn)椴荒苄纬捎行У膶?dǎo)熱通路,故對填充體系的導(dǎo)熱率影響不大。由此可見,使填料粒子分布不均勻是提高體系導(dǎo)熱率的有效方法。選擇10μm,40μm,70μm,100μm四種粒徑的AlN粒子填充環(huán)氧樹脂基體探究粒子的大小對復(fù)合材料導(dǎo)熱率的影響。模擬結(jié)果表明,粒子粒徑在一定范圍內(nèi)變化(10μm~40μm)時(shí),粒徑越大,其填充體系的導(dǎo)熱率越大,但粒徑增加超過這個(gè)范圍(大于40μm)后,粒徑的大小對其填充體系導(dǎo)熱性能的影響并不大。選擇合適大小的填料粒子是提高體系導(dǎo)熱性能有效的途徑。40μm/10μm不同粒徑配比時(shí),小粒子可以填充在大粒子間的縫隙中,將分散的大粒子連接起來,形成導(dǎo)熱網(wǎng)鏈,使得混合配比體系的導(dǎo)熱率高于單一粒徑填充體系。并且在兩種粒徑配比達(dá)到最佳時(shí),其填料體系的導(dǎo)熱率最大。比較40μm/10μm和100μm/10μm兩種配比填充效果后,發(fā)現(xiàn)粒徑差別越大越能改善體系的導(dǎo)熱性能。通過比較球形、橢球形和立方形的三種導(dǎo)熱粒子的填充體系的導(dǎo)熱率,可以知道,在低填充量下,粒子形狀對體系導(dǎo)熱率影響不大。但隨著填充量的增加,立方形粒子能迅速提高填充體系的導(dǎo)熱率,橢球形粒子次之,球形粒子最慢,并且這三種填充體系導(dǎo)熱率的差距越來越大,特別是立方形粒子和球形粒子兩種填充體系。由此可知,細(xì)長形的粒子容易與其他粒子建立連接,形成導(dǎo)熱網(wǎng)鏈,提高導(dǎo)熱率。
[Abstract]:With the electronic product radiation has become more and more prominent, the adhesive composite material has excellent thermal conductivity has become a research hotspot. In this paper, through VC++, ANSYS and MATLAB joint programming design a parametric finite element analysis method, the numerical simulation of thermal conductivity of the adhesive composite materials. With AlN/EP conductive adhesive composite as the research example the reliability of this method is verified by comparing with experimental values of composite thermal conductivity values. Simulation and finite element analysis method to explore the distribution of filler particles in space, particle size, different ratio of particle size, particle shape effect on the thermal conductivity of the adhesive composite material. The specific contents are as follows: in the network distribution, random distribution and the uniform distribution of these three kinds of particles in the space of network distribution system in the aggregation of particles are easy to form the heat conducting network chain, which affected the rate of heat conduction for filling system The largest. Other spatial distribution system because can not form effective conduction path, conducting rate has little effect on filling system. Thus, the uneven distribution of filler particles is an effective method to improve the thermal conductivity of the system. 10 m, 40 m, 70 m, 100 m with four different particle sizes AlN the particle effect of epoxy resin on the particle size of the composite heat transfer rate. The simulation results show that the particle size varies in a certain range (10 m~40 m), the larger particle size, the thermal conductivity of filled system rate is higher, but the particle size increases over this range (greater than 40 m after the effect of the size of the particle size) on the thermal conductivity of filled system is not large. Choose the suitable size of filler particles is to improve the system thermal performance effective way.40 m/10 m with different particle size ratio, small particles can be filled in the gap between the particles, the particles dispersed connection Together, forming a heat conductive network chain, makes the thermal mixing system was higher than that of single grain filling system. And in two the ratio of particle size to achieve the best thermal conductivity, the filler system. The maximum rate 40 m/10 m and 100 m/10 m two ratio of filling effect, found that the particle size difference the more can improve the thermal performance of the system. By comparing the thermal spherical system filled with three kinds of thermal ellipsoid particles and cubic shape of the rate, can know, at low loading rate, particle shape has little effect on the heat conduction system. But with the increase of filling quantity, cube shaped particles can quickly improve the thermal conductivity of filled system the rate of spheroidal particle of spherical particles, the slowest, and the three gap filling system of thermal conductivity is more and more big, especially the cube shaped particles and spherical particles of two kinds of filling system. Therefore, elongated particles and other particles to build A connection is made to form a heat conduction network chain to improve the thermal conductivity.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 XL;;帶有較大極性基團(tuán)的聚合物填充體系用偶聯(lián)劑[J];塑料;1991年05期
2 牛紅梅,周安寧;用偶聯(lián)劑改進(jìn)填充體系的相容性[J];陜西化工;1997年02期
3 文興;;用新的填充體系提高橡膠的性能[J];現(xiàn)代橡膠技術(shù);2007年05期
4 李漢堂;;輪胎工業(yè)用填充材料及填充體系[J];橡塑技術(shù)與裝備;2009年09期
5 彭響方,瞿金平;振動(dòng)力場作用下聚合物填充體系擠出混合特性[J];塑料工業(yè);1999年02期
6 何慧,賈德民,羅遠(yuǎn)芳,陶濤;三單體接枝共聚物對PP/云母填充體系性能的影響[J];塑料工業(yè);2002年05期
7 卜海濤;肖方成;歐相麟;吳世見;;拉伸流場對PP/納米CaCO_3填充體系分散混合的影響[J];塑料工業(yè);2008年11期
8 周曉東,吉法祥,丁華文,周天壽;超聲波處理對SICp/聚碳硅烷填充體系形態(tài)結(jié)構(gòu)的影響[J];塑料科技;1996年01期
9 熊忠,李鵬,尹文艷,陳驍,王淑英,吳其曄;POE/輕質(zhì)CaCO_3填充體系的力學(xué)、流變性能研究[J];特種橡膠制品;2005年01期
10 蔣化學(xué),黃玉君,曾清,卿勤,劉光超;NR內(nèi)胎配方設(shè)計(jì)改進(jìn)[J];輪胎工業(yè);2004年01期
相關(guān)會(huì)議論文 前1條
1 李祥剛;劉躍軍;黃宇剛;曾廣勝;魏珊珊;;基于自行開發(fā)的擠出脹大數(shù)據(jù)采集系統(tǒng)分析EVA/Fe填充體系的擠出脹大行為[A];中國化學(xué)會(huì)、中國力學(xué)學(xué)會(huì)第九屆全國流變學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2008年
相關(guān)博士學(xué)位論文 前1條
1 陳英姿;超聲作用對聚苯乙烯和聚丙烯以及聚丙烯共混填充體系結(jié)構(gòu)與性能影響的研究[D];四川大學(xué);2004年
相關(guān)碩士學(xué)位論文 前6條
1 王文志;膠黏復(fù)合材料導(dǎo)熱性能的數(shù)值模擬[D];杭州電子科技大學(xué);2015年
2 傅軼;紫外線/臭氧輻照氧化高密度聚乙烯填充體系的研究[D];四川大學(xué);2003年
3 孫同杰;聚乙烯及其共混、填充體系熔體彈性效應(yīng)的研究[D];青島科技大學(xué);2014年
4 黃磊;拉伸流場對聚烯烴/納米CaCO_3填充體系的分散混合作用[D];四川大學(xué);2007年
5 胡瑾;聚丙烯填充體系的動(dòng)態(tài)流變行為及形態(tài)結(jié)構(gòu)研究[D];湘潭大學(xué);2012年
6 范萍;輻照增容高密度聚乙烯/無機(jī)粒子填充體系的研究[D];四川大學(xué);2001年
,本文編號:1607835
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1607835.html