納米流體在儲層巖芯表面的鋪展及其驅(qū)油機(jī)理研究
本文關(guān)鍵詞: 納米SiO2顆粒 表面改性 巖芯 鋪展 驅(qū)油 出處:《西安石油大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:目前,國內(nèi)外油田的開采過程中普遍存在著低滲透油田所占比例大、采收率較低的問題。隨著納米技術(shù)的不斷發(fā)展,人們提出了利用納米顆粒進(jìn)行驅(qū)油以提高原油采收率的新思路。本文采用廉價(jià)、易得、無污染的納米Si O2顆粒作為油田用驅(qū)替劑的添加劑,以TEOS為原料,選用溶膠-凝膠法合成納米級Si O2顆粒,并采用二氯二甲基硅烷對其表面進(jìn)行疏水化改性,考察不同方法改性后顆粒的粒徑、表面潤濕性及其分散效果。將親/疏水化程度不同的納米Si O2分散在水溶液中制成顆粒水基分散液,從微觀角度出發(fā),利用電子顯微鏡觀察納米流體鋪展后,Si O2顆粒對巖芯壁面的微觀作用;從宏觀角度出發(fā),測試納米流體與原油之間的界面張力值,進(jìn)行巖芯驅(qū)替實(shí)驗(yàn),評價(jià)不同種類納米流體的驅(qū)油效果,旨在提高原油的采收率,探索其驅(qū)油的作用機(jī)理。研究結(jié)果表明,溶膠-凝膠法合成的納米Si O2顆?赏ㄟ^調(diào)整母液的酸堿度、攪拌速度等措施有效的控制顆粒粒徑、反應(yīng)時(shí)間及最終產(chǎn)量。尤其是當(dāng)反應(yīng)母液的p H等于8時(shí),反應(yīng)時(shí)間僅需12小時(shí),且收率可達(dá)80%;合成的納米Si O2顆粒呈均勻分散的球形,平均粒徑為38 nm。對其表面進(jìn)行疏水化改性時(shí),不同改性方法處理后的顆粒粒徑出現(xiàn)明顯的差異,且疏水化程度的可控范圍不同;效果最好的是使用二氯二甲基硅烷進(jìn)行一步法改性,改性后顆粒粒徑分布均勻,僅為10 nm。將親/疏水化程度不同的納米Si O2制成質(zhì)量分?jǐn)?shù)為0.05%的顆粒水基分散液后進(jìn)行測試可知,納米流體能夠顯著的降低油水界面張力,提高原油的采收率,尤其是親水性的S-05。綜合上述實(shí)驗(yàn)結(jié)果可歸納得出利用納米流體進(jìn)行驅(qū)油的作用機(jī)理。由于納米Si O2顆粒的加入,油水界面張力大大降低,提高了驅(qū)替劑的洗油效率。隨著納米流體不斷進(jìn)入儲層,Si O2顆?梢酝黄茙r芯表面附著的水化層及油層,在部分區(qū)域進(jìn)行選擇性吸附,形成微-納米疏水結(jié)構(gòu),不僅發(fā)揮了剝離原油的作用,且能夠在后期的注水過程中起到一定的降壓增注效果。
[Abstract]:At present, the problems of low permeability oil fields and low oil recovery exist in the production process of oil fields at home and abroad. With the development of nanotechnology, In this paper, the cheap, easily available and pollution-free nano-SiO _ 2 particles are used as additives of displacement agent for oil field, and TEOS is used as raw material. Nanometer Sio _ 2 particles were synthesized by sol-gel method and hydrophobically modified by dichlorodimethylsilane. Surface wettability and dispersion effect. Nanometer Sio _ 2 with different degree of hydrophobicity and hydrophobicity was dispersed in aqueous solution to form granular water-based dispersion. The microcosmic effect of Sio _ 2 particles on core wall was observed by electron microscope, and the interfacial tension between nano-fluid and crude oil was measured from a macro point of view, and the core displacement experiment was carried out. The purpose of evaluating the oil displacement effect of different kinds of nano-fluids is to improve the oil recovery and explore the mechanism of oil displacement. The results show that the sol-gel synthesis of nano-SiO _ 2 particles can adjust the pH of the mother liquor. The stirring rate can effectively control particle size, reaction time and final yield, especially when pH of the mother liquor is 8:00, reaction time is only 12 hours, and the yield can be up to 80. The synthesized nano-SiO _ 2 particles are uniformly dispersed spherical. The average particle size is 38 nm. When the surface is modified by hydrophobicity, the particle size of different modification methods is obviously different, and the controllable range of hydrophobic degree is different. The best effect is to use dichlorodimethylsilane for one-step modification, and the particle size distribution is uniform after modification. It is only 10 nm. The nano-SiO _ 2 with different hydrophobicity and hydrophilic degree is prepared into 0.05% particle water-based dispersion. The results show that the nano-fluid can significantly reduce the oil-water interfacial tension and improve the oil recovery. Especially the hydrophilic S-05.Combined with the above experimental results, the mechanism of oil displacement using nano-fluids can be concluded. Because of the addition of nano-SiO _ 2 particles, the interfacial tension of oil and water can be greatly reduced. The oil washing efficiency of the displacement agent is improved. With the constant entry of nano-fluids into the reservoir, Sio _ 2 particles can break through the hydration layer and the oil layer attached to the core surface, and selectively adsorb in some areas to form a micro-nano hydrophobic structure. It not only plays the role of stripping crude oil, but also plays a certain effect of reducing pressure and increasing injection in the later water injection process.
【學(xué)位授予單位】:西安石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TE357.4;TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王紀(jì)霞;張秋禹;苗振華;張和鵬;;單分散二氧化硅微球的制備及粉體分散方法的研究進(jìn)展[J];材料科學(xué)與工程學(xué)報(bào);2008年05期
2 施利毅,華彬,張劍平;微乳液的結(jié)構(gòu)及其在制備超細(xì)顆粒中的應(yīng)用[J];功能材料;1998年02期
3 姜小陽;李霞;;納米二氧化硅微球的應(yīng)用及制備進(jìn)展[J];硅酸鹽通報(bào);2011年03期
4 朱世東;周根樹;蔡銳;韓燕;田偉;;納米材料國內(nèi)外研究進(jìn)展Ⅰ——納米材料的結(jié)構(gòu)、特異效應(yīng)與性能[J];熱處理技術(shù)與裝備;2010年03期
5 MansourS.Almalik,AttiaM.Attia,LarryK.Jang,張建;堿驅(qū)對原油采收率的影響[J];國外油田工程;1998年03期
6 王小林;王學(xué)剛;馬翠巖;王爭進(jìn);馮慶賢;;微生物驅(qū)油技術(shù)綜述[J];國外油田工程;2007年03期
7 眭純?nèi)A;厲華;畢新忠;;世界三次采油現(xiàn)狀及發(fā)展趨勢[J];國外油田工程;2010年12期
8 張文柯;;表面活性劑驅(qū)油體系研究進(jìn)展[J];廣東化工;2013年04期
9 王海桐;魏安軍;方文杰;;淺談堿驅(qū)過程中的結(jié)垢機(jī)理及解決途徑[J];地下水;2013年03期
10 i幈頸,
本文編號:1523226
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1523226.html