基于等徑角擠扭的SiC-Al粉末微—納結(jié)構(gòu)和力—熱性能
本文關(guān)鍵詞:基于等徑角擠扭的SiC-Al粉末微—納結(jié)構(gòu)和力—熱性能 出處:《合肥工業(yè)大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: SiC和Al混合粉末 等徑角擠扭 界面 晶體結(jié)構(gòu) 力學(xué)和熱學(xué)性能
【摘要】:SiCp/Al復(fù)合材料不僅密度遠(yuǎn)低于傳統(tǒng)鋼結(jié)構(gòu)用材,而且其剛度、強(qiáng)度和尺寸穩(wěn)定性等力學(xué)性能均符合結(jié)構(gòu)件服役需要;同時(shí)具有良好的耐磨性能、耐蝕性能以及熱學(xué)、電學(xué)性能,因此在某些環(huán)境下還可以用作功能材料。該材料傳統(tǒng)制備工藝往往存在需要二次加工或工藝成本高等諸多不足或限制。為此,本課題提出一種制備該材料的新工藝:將SiC(經(jīng)過(guò)預(yù)處理)和Al的混合粉末裝進(jìn)黃銅包套進(jìn)行預(yù)壓,然后將包套放入自行設(shè)計(jì)的等徑角擠扭(ECAP-T)模具垂直通道中,對(duì)其在一定溫度下進(jìn)行擠壓,從而使混合粉末在變形過(guò)程中實(shí)現(xiàn)固結(jié)。該工藝可以提供較大靜水壓力,從而改善SiC顆粒分布、細(xì)化Al晶粒,同時(shí)有效閉合孔隙、減少裂紋源。此外,此工藝可以使材料從松散粉末直接固結(jié)成致密塊體,無(wú)需二次加工,提高了制備效率;并且變形溫度低于傳統(tǒng)方法所需溫度,從而節(jié)省了能耗。在眾多大塑性變形(SPD)工藝中,ECAP-T作為一種在等徑角擠壓(ECAP)和擠扭(TE)基礎(chǔ)上改進(jìn)的新工藝,不僅能保證足夠的變形量,而且還能改善材料的變形均勻程度。現(xiàn)階段已經(jīng)有相關(guān)研究探討了SiC和Al的混合粉末通過(guò)ECAP-T變形致密的可行性,初步觀察了材料變形后組織,測(cè)試了材料的部分力學(xué)性能,但缺乏對(duì)變形后復(fù)合材料的SiC與Al之間的界面、基體材料的晶體結(jié)構(gòu)、材料的力學(xué)與熱學(xué)綜合性能等相關(guān)研究。本課題先通過(guò)有限元數(shù)值模擬方法得到了帶有包套的粉坯在ECAP-T變形過(guò)程中的流線網(wǎng)絡(luò)圖和速度場(chǎng)分布云圖,研究了粉坯在不同位置處的變形程度和粉坯在不同變形階段的流動(dòng)特點(diǎn)。在此基礎(chǔ)上,對(duì)含有不同質(zhì)量分?jǐn)?shù)(10 wt%,20 wt%和40wt%) SiC的混合粉末開(kāi)展了在不同溫度(150℃、250℃和350℃)下的多道次ECAP-T變形實(shí)驗(yàn),對(duì)變形后材料進(jìn)行相對(duì)密度測(cè)試和金相組織觀察。結(jié)果表明:增加變形道次以及降低SiC含量能夠使材料整體相對(duì)密度提高,內(nèi)部SiC顆粒團(tuán)簇?cái)?shù)量下降,SiC顆粒分布更為均勻;變形溫度(250℃以上)對(duì)試樣相對(duì)密度和SiC顆粒分布的影響很小,但如果變形溫度過(guò)低(150℃),材料會(huì)有明顯的孔隙和SiC團(tuán)聚現(xiàn)象。借助X射線光電子能譜儀(XPS),透射電子顯微鏡(TEM)和掃描電子顯微鏡(SEM)等多種手段針對(duì)在250℃下1道次ECAP-T變形后所制得的復(fù)合材料界面進(jìn)行觀察表征。結(jié)果表明:基體Al和增強(qiáng)體SiC之間存在元素互擴(kuò)散現(xiàn)象,促使SiC顆粒表面非晶態(tài)SiO2層與Al基體之間發(fā)生了保護(hù)性反應(yīng),生成了Al2O3,避免了有害相Al4C3的產(chǎn)生。隨著變形道次的增加,元素互擴(kuò)散程度不斷提高,界面反應(yīng)程度也不斷加大,界面結(jié)合更加牢固。對(duì)250℃下ECAP-T變形固結(jié)后的含10wt.%SiC復(fù)合材料的X射線衍射峰形進(jìn)行研究,發(fā)現(xiàn)了Al基體內(nèi)晶體結(jié)構(gòu)與變形程度之間的聯(lián)系:隨著變形道次的增加,Al基體晶粒內(nèi)的亞結(jié)構(gòu)平均尺寸不斷減小,顯微應(yīng)變和位錯(cuò)密度不斷提高。與ECAP-T變形固結(jié)后的純Al材料相比,變形后的復(fù)合材料Al基體亞結(jié)構(gòu)隨變形道次的增加平均尺寸的降幅和顯微應(yīng)變的增幅均小于純Al;且復(fù)合材料Al基體內(nèi)位錯(cuò)密度小于純Al內(nèi)位錯(cuò)密度。采用單因素變量法對(duì)不同實(shí)驗(yàn)條件下所制得的變形試樣進(jìn)行力學(xué)和熱學(xué)性能測(cè)試。結(jié)果表明,增加ECAP-T變形道次和增加SiC含量能夠提高試樣的強(qiáng)度、剛度和硬度,降低試樣的熱導(dǎo)率,使試樣更容易獲得較低的熱膨脹系數(shù)CTE;而改變ECAP-T變形溫度對(duì)試樣的力學(xué)和熱學(xué)性能影響并不明顯。但是要注意避免變形溫度過(guò)低(150℃)的情況,試樣會(huì)因?yàn)榇罂紫兜拇嬖?使得綜合性能被嚴(yán)重削弱。本文從多個(gè)角度(材料致密程度、SiC顆粒分布、SiC/Al界面以及Al基體晶體結(jié)構(gòu))進(jìn)行分析,闡明了三種實(shí)驗(yàn)參數(shù)(變形道次、變形溫度和SiC含量)影響試樣力學(xué)與熱學(xué)性能的機(jī)制。
[Abstract]:SiCp/Al composite not only density is far lower than the traditional steel structure material, and its stiffness, strength and dimensional stability and mechanical properties are in accordance with the structure of service needs; at the same time has good wear resistance, corrosion resistance and thermal properties, therefore, also can be used as functional materials in certain environments. The traditional preparation process often there need to be two times the processing process or the high cost of many deficiencies or limitations. Therefore, this paper puts forward a new process for preparing the material: SiC (pretreated) mixed powders and Al into brass clad pre pressing, then pack into the designed channel angular extrusion and twist (ECAP-T) die vertical channel, the extrusion at a certain temperature, so that the implementation of mixed powder consolidation in the deformation process. This process can provide high hydrostatic pressure, so as to improve the distribution of SiC particles, fine Al grain, and effectively closed pores, reduce crack source. In addition, this process can make the material into a dense block from the loose powder consolidation, without the two processing, improve the preparation efficiency; and the deformation temperature is lower than that of the traditional method of the required temperature, thereby saving energy. The large deformation of many (in the process of ECAP-T SPD), as one of the ECAP (ECAP) and twist extrusion (TE) process based on improved, can not only ensure enough deformation, but also can improve the deformation uniformity. At present there have been discussed the feasibility research of mixed powder of SiC and Al by ECAP-T deformation density, a preliminary observation of the microstructure of materials after deformation, some mechanical properties of material were tested, but the lack of between SiC and Al composites after deformation interface, crystal structure of matrix material, the mechanical and thermal properties and other related materials Research on this topic. First through the finite element numerical simulation method has been covered with powder billet in ECAP-T deformation process streamline network diagram and velocity field distribution nephogram, flow characteristics of powders in different positions of the deformation degree and powders in different deformation stages. On this basis, with different the mass fraction (10 wt%, 20 wt% and 40wt%) mixed powders of SiC have been carried out at different temperatures (150 C, 250 C and 350 C) under the multi ECAP-T deformation experiment, relative density test and microstructure observation of the deformed materials. The results show that the increase of deformation and decrease the content of SiC can make the whole material relative density increased, the internal SiC particle clusters decreases and the distribution of SiC particles is more uniform; the deformation temperature (250 DEG C) is very small on the relative density of the sample and the SiC particle distribution, but if the deformation temperature is too low (150 C), The material has obvious pores and aggregation of SiC. By using X ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and other means for the interface of the composite material at 250 DEG C for 1 times after ECAP-T deformation produced were observed. The results showed that the matrix characterization Al and enhanced interdiffusion phenomena exist between SiC, the surface of SiC particles occurred in non protective reaction between amorphous SiO2 layer and the Al substrate, the formation of Al2O3, to avoid the harmful phase Al4C3. With deformation times increasing, interdiffusion degree increasing, interfacial reaction degree is also increasing, interface with more firmly. To study the temperature below 250 DEG ECAP-T after the consolidation deformation of composite material with 10wt.%SiC X ray diffraction peak, found between the Al matrix in the crystal structure and deformation degree of contact with the increase of deformation The average size of the sub structure, Al matrix grains decreases, the micro strain and dislocation density increase. Compared with the ECAP-T after the consolidation deformation of pure Al material, Al composite substrate sub structure after deformation with the deformation times increasing decline and the average size of the micro strain increase was less than that of the pure Al and the composite; the matrix material Al dislocation density less than that of the pure Al. The dislocation density in the deformed specimens by single factor variable method under different experimental conditions are obtained in the thermal and mechanical properties test. The results show that the increase of ECAP-T deformation times and increasing the content of SiC can improve the tensile strength, stiffness and hardness, reduce the thermal conductivity the samples are easier to obtain, low coefficient of thermal expansion of CTE and ECAP-T; change the effect of deformation temperature the mechanical and thermal properties of the specimen is not obvious. But we should pay attention to avoid the deformation of low temperature (150 DEG C). Because of the large pore condition, the sample will exist, the comprehensive performance is severely weakened. This paper (material density degree, the distribution of SiC particles, SiC/Al interface and Al matrix crystal structure) analysis of the three kinds of experimental parameters (deformation, deformation temperature and SiC content) the influence mechanism of mechanical and thermal performance.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB333
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭立靜,陳昌麒,周鐵濤,劉培英,曾梅光;ECAP細(xì)晶機(jī)制及對(duì)純鋁顯微組織和力學(xué)性能的影響[J];稀有金屬材料與工程;2004年12期
2 黃震威,曹湛,武保林,王洪順;ECAP條件下純鋁的應(yīng)變行為模擬研究[J];沈陽(yáng)航空工業(yè)學(xué)院學(xué)報(bào);2005年01期
3 杜忠澤;曹小芳;符寒光;王經(jīng)濤;趙西成;;ECAP變形低碳鋼的組織變化規(guī)律[J];北京科技大學(xué)學(xué)報(bào);2006年05期
4 王渠東;陳勇軍;張陸軍;林金寶;翟春泉;;Microstructure and mechanical properties of AZ31-0.5%Si alloy processed by ECAP[J];Transactions of Nonferrous Metals Society of China;2006年S3期
5 斯志軍;丁雨田;周懷存;胡勇;;ECAP變形后純銅的熱穩(wěn)定性研究[J];鑄造技術(shù);2008年11期
6 彭北山;劉志義;寧愛(ài)林;許曉嫦;黨朋;曾蘇民;;ECAP變形過(guò)程中θ′相的碎化及溶解行為分析[J];稀有金屬材料與工程;2008年11期
7 畢見(jiàn)強(qiáng);;Effect of ECAP Pass Number on Mechanical Properties of2Al2 Al Alloy[J];Journal of Wuhan University of Technology(Materials Science Edition);2008年01期
8 張靜;張克實(shí);WU Hwai-Chung;于梅花;;Experimental and numerical investigation on pure aluminum by ECAP[J];Transactions of Nonferrous Metals Society of China;2009年05期
9 宋丹;馬愛(ài)斌;江靜華;林萍華;楊東輝;;Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP[J];Transactions of Nonferrous Metals Society of China;2009年05期
10 楊西榮;趙西成;付文杰;;鈦及鈦合金ECAP變形研究進(jìn)展[J];材料導(dǎo)報(bào);2010年05期
相關(guān)會(huì)議論文 前10條
1 Qiang Fan;Wei Liang;Liping Bian;Manqing Cheng;;Effect of ECAP Pass on Corrosion Behavior of High-Al Content Magnesium Alloys[A];中國(guó)材料大會(huì)2012第18分會(huì)場(chǎng):先進(jìn)鎂合金及其應(yīng)用論文集[C];2012年
2 戈曉嵐;許曉靜;汪建敏;居志蘭;;ECAP仿真與組織分析[A];2004年中國(guó)材料研討會(huì)論文摘要集[C];2004年
3 戈曉嵐;許曉靜;汪建敏;居志蘭;;ECAP仿真與組織分析[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年
4 張振軍;段啟強(qiáng);吳世丁;楊剛;張哲峰;;層錯(cuò)能對(duì)ECAP制備超細(xì)晶銅鋅合金高周疲勞行為的影響[A];第十五屆全國(guó)疲勞與斷裂學(xué)術(shù)會(huì)議摘要及論文集[C];2010年
5 許曉靜;曹進(jìn)琪;姜玉杰;陸樹(shù)顯;張雪峰;;TA2在823K溫度ECAP變形后的拉伸性能與位錯(cuò)強(qiáng)化[A];2006年全國(guó)功能材料學(xué)術(shù)年會(huì)專輯[C];2006年
6 何運(yùn)斌;潘清林;覃銀江;李文斌;梁文杰;劉曉艷;Yu Lung CHIU;;ECAP法制備細(xì)晶ZK60鎂合金的組織與性能[A];有色金屬工業(yè)科學(xué)發(fā)展——中國(guó)有色金屬學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2010年
7 王立忠;王經(jīng)濤;陳金德;;低碳鋼的ECAP擠壓變形及其組織超細(xì)化的研究[A];第八屆全國(guó)塑性加工學(xué)術(shù)年會(huì)論文集[C];2002年
8 Yi Zhang;Fuyin Han;Yongsheng Wang;Wei Liang;Ping Wang;Jiaxue You;Xiting Zhong;;Microstructure and Mechanical Properties of Mg-6Zn-2Si Alloy Processed by Equal Channel Angular Pressing[A];中國(guó)材料大會(huì)2012第18分會(huì)場(chǎng):先進(jìn)鎂合金及其應(yīng)用論文集[C];2012年
9 王立忠;陳金德;王經(jīng)濤;;低碳鋼的ECAP擠壓變形及其組織超細(xì)化的研究[A];制造業(yè)與未來(lái)中國(guó)——2002年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2002年
10 孟麗;肖靈;于鐘德;;電刺激參數(shù)與ECAP閾值關(guān)系的研究[A];中國(guó)聲學(xué)學(xué)會(huì)第十屆青年學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 錢陳豪;基于等徑角擠扭的SiC-Al粉末微—納結(jié)構(gòu)和力—熱性能[D];合肥工業(yè)大學(xué);2015年
2 郭廷彪;ECAP制備超細(xì)晶銅的組織演變、織構(gòu)特征及力學(xué)性能研究[D];蘭州理工大學(xué);2010年
3 房大然;等通道轉(zhuǎn)角擠壓(ECAP)鋁合金的力學(xué)性能和斷裂行為[D];天津大學(xué);2007年
4 鄭志軍;ECAP制備的塊體納米晶304不銹鋼的組織演變、力學(xué)性能與腐蝕行為[D];華南理工大學(xué);2012年
5 邊麗萍;ECAP擠壓亞共晶Al-Mg_2Si原位復(fù)合材料強(qiáng)韌化研究[D];太原理工大學(xué);2011年
6 何運(yùn)斌;ECAP超細(xì)晶ZK60鎂合金的制備及其相關(guān)基礎(chǔ)研究[D];中南大學(xué);2011年
7 徐淑波;等通道彎角擠壓(ECAP)變形機(jī)理數(shù)值模擬與實(shí)驗(yàn)研究[D];山東大學(xué);2006年
8 宋杰;時(shí)效及ECAP處理無(wú)鎳Ti基記憶合金相變與力學(xué)行為研究[D];上海交通大學(xué);2011年
9 劉曉燕;室溫ECAP變形工業(yè)純鈦?zhàn)冃涡袨榧敖M織性能研究[D];西安建筑科技大學(xué);2014年
10 盧慶亮;準(zhǔn)晶增強(qiáng)Mg-Zn-Y合金的ECAP變形組織及力學(xué)性能[D];山東大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 陳曉強(qiáng);超聲波輔助等徑角擠壓超細(xì)晶制備工藝及性能評(píng)估[D];深圳大學(xué);2015年
2 王力;ECAP純鈦板材冷軋變形的組織與性能研究[D];西安建筑科技大學(xué);2015年
3 陳曉奇;ECAP純鈦的晶粒取向分布計(jì)算機(jī)模擬[D];西安建筑科技大學(xué);2015年
4 馬偉洲;純鈦板材ECAP變形及組織性能研究[D];西安建筑科技大學(xué);2015年
5 胡玉軍;ECAP工藝對(duì)H65黃銅第二相狀態(tài)及性能影響的研究[D];江西理工大學(xué);2015年
6 樊強(qiáng);室溫等通道轉(zhuǎn)角擠壓(ECAP)對(duì)純鎂組織及性能的影響[D];太原理工大學(xué);2013年
7 王康;外場(chǎng)對(duì)低溫ECAP制備1050合金退火組織與性能的影響[D];東北大學(xué);2014年
8 陳洋;熱變形(壓縮、ECAP)-預(yù)回復(fù)對(duì)7085鋁合金擠壓材組織性能及各向異性的影響[D];江蘇大學(xué);2016年
9 張景玉;熱變形(壓縮、ECAP)-預(yù)回復(fù)對(duì)超高強(qiáng)鋁合金Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr組織性能及各向異性的影響[D];江蘇大學(xué);2016年
10 劉冰;ECAP和熱處理對(duì)CP-Ti和Ti-0.2Pd在模擬體液中耐腐蝕性的影響[D];南京航空航天大學(xué);2015年
,本文編號(hào):1411380
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1411380.html