基于等徑角擠扭的SiC-Al粉末微—納結(jié)構(gòu)和力—熱性能
本文關鍵詞:基于等徑角擠扭的SiC-Al粉末微—納結(jié)構(gòu)和力—熱性能 出處:《合肥工業(yè)大學》2015年博士論文 論文類型:學位論文
更多相關文章: SiC和Al混合粉末 等徑角擠扭 界面 晶體結(jié)構(gòu) 力學和熱學性能
【摘要】:SiCp/Al復合材料不僅密度遠低于傳統(tǒng)鋼結(jié)構(gòu)用材,而且其剛度、強度和尺寸穩(wěn)定性等力學性能均符合結(jié)構(gòu)件服役需要;同時具有良好的耐磨性能、耐蝕性能以及熱學、電學性能,因此在某些環(huán)境下還可以用作功能材料。該材料傳統(tǒng)制備工藝往往存在需要二次加工或工藝成本高等諸多不足或限制。為此,本課題提出一種制備該材料的新工藝:將SiC(經(jīng)過預處理)和Al的混合粉末裝進黃銅包套進行預壓,然后將包套放入自行設計的等徑角擠扭(ECAP-T)模具垂直通道中,對其在一定溫度下進行擠壓,從而使混合粉末在變形過程中實現(xiàn)固結(jié)。該工藝可以提供較大靜水壓力,從而改善SiC顆粒分布、細化Al晶粒,同時有效閉合孔隙、減少裂紋源。此外,此工藝可以使材料從松散粉末直接固結(jié)成致密塊體,無需二次加工,提高了制備效率;并且變形溫度低于傳統(tǒng)方法所需溫度,從而節(jié)省了能耗。在眾多大塑性變形(SPD)工藝中,ECAP-T作為一種在等徑角擠壓(ECAP)和擠扭(TE)基礎上改進的新工藝,不僅能保證足夠的變形量,而且還能改善材料的變形均勻程度。現(xiàn)階段已經(jīng)有相關研究探討了SiC和Al的混合粉末通過ECAP-T變形致密的可行性,初步觀察了材料變形后組織,測試了材料的部分力學性能,但缺乏對變形后復合材料的SiC與Al之間的界面、基體材料的晶體結(jié)構(gòu)、材料的力學與熱學綜合性能等相關研究。本課題先通過有限元數(shù)值模擬方法得到了帶有包套的粉坯在ECAP-T變形過程中的流線網(wǎng)絡圖和速度場分布云圖,研究了粉坯在不同位置處的變形程度和粉坯在不同變形階段的流動特點。在此基礎上,對含有不同質(zhì)量分數(shù)(10 wt%,20 wt%和40wt%) SiC的混合粉末開展了在不同溫度(150℃、250℃和350℃)下的多道次ECAP-T變形實驗,對變形后材料進行相對密度測試和金相組織觀察。結(jié)果表明:增加變形道次以及降低SiC含量能夠使材料整體相對密度提高,內(nèi)部SiC顆粒團簇數(shù)量下降,SiC顆粒分布更為均勻;變形溫度(250℃以上)對試樣相對密度和SiC顆粒分布的影響很小,但如果變形溫度過低(150℃),材料會有明顯的孔隙和SiC團聚現(xiàn)象。借助X射線光電子能譜儀(XPS),透射電子顯微鏡(TEM)和掃描電子顯微鏡(SEM)等多種手段針對在250℃下1道次ECAP-T變形后所制得的復合材料界面進行觀察表征。結(jié)果表明:基體Al和增強體SiC之間存在元素互擴散現(xiàn)象,促使SiC顆粒表面非晶態(tài)SiO2層與Al基體之間發(fā)生了保護性反應,生成了Al2O3,避免了有害相Al4C3的產(chǎn)生。隨著變形道次的增加,元素互擴散程度不斷提高,界面反應程度也不斷加大,界面結(jié)合更加牢固。對250℃下ECAP-T變形固結(jié)后的含10wt.%SiC復合材料的X射線衍射峰形進行研究,發(fā)現(xiàn)了Al基體內(nèi)晶體結(jié)構(gòu)與變形程度之間的聯(lián)系:隨著變形道次的增加,Al基體晶粒內(nèi)的亞結(jié)構(gòu)平均尺寸不斷減小,顯微應變和位錯密度不斷提高。與ECAP-T變形固結(jié)后的純Al材料相比,變形后的復合材料Al基體亞結(jié)構(gòu)隨變形道次的增加平均尺寸的降幅和顯微應變的增幅均小于純Al;且復合材料Al基體內(nèi)位錯密度小于純Al內(nèi)位錯密度。采用單因素變量法對不同實驗條件下所制得的變形試樣進行力學和熱學性能測試。結(jié)果表明,增加ECAP-T變形道次和增加SiC含量能夠提高試樣的強度、剛度和硬度,降低試樣的熱導率,使試樣更容易獲得較低的熱膨脹系數(shù)CTE;而改變ECAP-T變形溫度對試樣的力學和熱學性能影響并不明顯。但是要注意避免變形溫度過低(150℃)的情況,試樣會因為大孔隙的存在,使得綜合性能被嚴重削弱。本文從多個角度(材料致密程度、SiC顆粒分布、SiC/Al界面以及Al基體晶體結(jié)構(gòu))進行分析,闡明了三種實驗參數(shù)(變形道次、變形溫度和SiC含量)影響試樣力學與熱學性能的機制。
[Abstract]:SiCp/Al composite not only density is far lower than the traditional steel structure material, and its stiffness, strength and dimensional stability and mechanical properties are in accordance with the structure of service needs; at the same time has good wear resistance, corrosion resistance and thermal properties, therefore, also can be used as functional materials in certain environments. The traditional preparation process often there need to be two times the processing process or the high cost of many deficiencies or limitations. Therefore, this paper puts forward a new process for preparing the material: SiC (pretreated) mixed powders and Al into brass clad pre pressing, then pack into the designed channel angular extrusion and twist (ECAP-T) die vertical channel, the extrusion at a certain temperature, so that the implementation of mixed powder consolidation in the deformation process. This process can provide high hydrostatic pressure, so as to improve the distribution of SiC particles, fine Al grain, and effectively closed pores, reduce crack source. In addition, this process can make the material into a dense block from the loose powder consolidation, without the two processing, improve the preparation efficiency; and the deformation temperature is lower than that of the traditional method of the required temperature, thereby saving energy. The large deformation of many (in the process of ECAP-T SPD), as one of the ECAP (ECAP) and twist extrusion (TE) process based on improved, can not only ensure enough deformation, but also can improve the deformation uniformity. At present there have been discussed the feasibility research of mixed powder of SiC and Al by ECAP-T deformation density, a preliminary observation of the microstructure of materials after deformation, some mechanical properties of material were tested, but the lack of between SiC and Al composites after deformation interface, crystal structure of matrix material, the mechanical and thermal properties and other related materials Research on this topic. First through the finite element numerical simulation method has been covered with powder billet in ECAP-T deformation process streamline network diagram and velocity field distribution nephogram, flow characteristics of powders in different positions of the deformation degree and powders in different deformation stages. On this basis, with different the mass fraction (10 wt%, 20 wt% and 40wt%) mixed powders of SiC have been carried out at different temperatures (150 C, 250 C and 350 C) under the multi ECAP-T deformation experiment, relative density test and microstructure observation of the deformed materials. The results show that the increase of deformation and decrease the content of SiC can make the whole material relative density increased, the internal SiC particle clusters decreases and the distribution of SiC particles is more uniform; the deformation temperature (250 DEG C) is very small on the relative density of the sample and the SiC particle distribution, but if the deformation temperature is too low (150 C), The material has obvious pores and aggregation of SiC. By using X ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and other means for the interface of the composite material at 250 DEG C for 1 times after ECAP-T deformation produced were observed. The results showed that the matrix characterization Al and enhanced interdiffusion phenomena exist between SiC, the surface of SiC particles occurred in non protective reaction between amorphous SiO2 layer and the Al substrate, the formation of Al2O3, to avoid the harmful phase Al4C3. With deformation times increasing, interdiffusion degree increasing, interfacial reaction degree is also increasing, interface with more firmly. To study the temperature below 250 DEG ECAP-T after the consolidation deformation of composite material with 10wt.%SiC X ray diffraction peak, found between the Al matrix in the crystal structure and deformation degree of contact with the increase of deformation The average size of the sub structure, Al matrix grains decreases, the micro strain and dislocation density increase. Compared with the ECAP-T after the consolidation deformation of pure Al material, Al composite substrate sub structure after deformation with the deformation times increasing decline and the average size of the micro strain increase was less than that of the pure Al and the composite; the matrix material Al dislocation density less than that of the pure Al. The dislocation density in the deformed specimens by single factor variable method under different experimental conditions are obtained in the thermal and mechanical properties test. The results show that the increase of ECAP-T deformation times and increasing the content of SiC can improve the tensile strength, stiffness and hardness, reduce the thermal conductivity the samples are easier to obtain, low coefficient of thermal expansion of CTE and ECAP-T; change the effect of deformation temperature the mechanical and thermal properties of the specimen is not obvious. But we should pay attention to avoid the deformation of low temperature (150 DEG C). Because of the large pore condition, the sample will exist, the comprehensive performance is severely weakened. This paper (material density degree, the distribution of SiC particles, SiC/Al interface and Al matrix crystal structure) analysis of the three kinds of experimental parameters (deformation, deformation temperature and SiC content) the influence mechanism of mechanical and thermal performance.
【學位授予單位】:合肥工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TB333
【相似文獻】
相關期刊論文 前10條
1 鄭立靜,陳昌麒,周鐵濤,劉培英,曾梅光;ECAP細晶機制及對純鋁顯微組織和力學性能的影響[J];稀有金屬材料與工程;2004年12期
2 黃震威,曹湛,武保林,王洪順;ECAP條件下純鋁的應變行為模擬研究[J];沈陽航空工業(yè)學院學報;2005年01期
3 杜忠澤;曹小芳;符寒光;王經(jīng)濤;趙西成;;ECAP變形低碳鋼的組織變化規(guī)律[J];北京科技大學學報;2006年05期
4 王渠東;陳勇軍;張陸軍;林金寶;翟春泉;;Microstructure and mechanical properties of AZ31-0.5%Si alloy processed by ECAP[J];Transactions of Nonferrous Metals Society of China;2006年S3期
5 斯志軍;丁雨田;周懷存;胡勇;;ECAP變形后純銅的熱穩(wěn)定性研究[J];鑄造技術;2008年11期
6 彭北山;劉志義;寧愛林;許曉嫦;黨朋;曾蘇民;;ECAP變形過程中θ′相的碎化及溶解行為分析[J];稀有金屬材料與工程;2008年11期
7 畢見強;;Effect of ECAP Pass Number on Mechanical Properties of2Al2 Al Alloy[J];Journal of Wuhan University of Technology(Materials Science Edition);2008年01期
8 張靜;張克實;WU Hwai-Chung;于梅花;;Experimental and numerical investigation on pure aluminum by ECAP[J];Transactions of Nonferrous Metals Society of China;2009年05期
9 宋丹;馬愛斌;江靜華;林萍華;楊東輝;;Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP[J];Transactions of Nonferrous Metals Society of China;2009年05期
10 楊西榮;趙西成;付文杰;;鈦及鈦合金ECAP變形研究進展[J];材料導報;2010年05期
相關會議論文 前10條
1 Qiang Fan;Wei Liang;Liping Bian;Manqing Cheng;;Effect of ECAP Pass on Corrosion Behavior of High-Al Content Magnesium Alloys[A];中國材料大會2012第18分會場:先進鎂合金及其應用論文集[C];2012年
2 戈曉嵐;許曉靜;汪建敏;居志蘭;;ECAP仿真與組織分析[A];2004年中國材料研討會論文摘要集[C];2004年
3 戈曉嵐;許曉靜;汪建敏;居志蘭;;ECAP仿真與組織分析[A];2004年材料科學與工程新進展[C];2004年
4 張振軍;段啟強;吳世丁;楊剛;張哲峰;;層錯能對ECAP制備超細晶銅鋅合金高周疲勞行為的影響[A];第十五屆全國疲勞與斷裂學術會議摘要及論文集[C];2010年
5 許曉靜;曹進琪;姜玉杰;陸樹顯;張雪峰;;TA2在823K溫度ECAP變形后的拉伸性能與位錯強化[A];2006年全國功能材料學術年會專輯[C];2006年
6 何運斌;潘清林;覃銀江;李文斌;梁文杰;劉曉艷;Yu Lung CHIU;;ECAP法制備細晶ZK60鎂合金的組織與性能[A];有色金屬工業(yè)科學發(fā)展——中國有色金屬學會第八屆學術年會論文集[C];2010年
7 王立忠;王經(jīng)濤;陳金德;;低碳鋼的ECAP擠壓變形及其組織超細化的研究[A];第八屆全國塑性加工學術年會論文集[C];2002年
8 Yi Zhang;Fuyin Han;Yongsheng Wang;Wei Liang;Ping Wang;Jiaxue You;Xiting Zhong;;Microstructure and Mechanical Properties of Mg-6Zn-2Si Alloy Processed by Equal Channel Angular Pressing[A];中國材料大會2012第18分會場:先進鎂合金及其應用論文集[C];2012年
9 王立忠;陳金德;王經(jīng)濤;;低碳鋼的ECAP擠壓變形及其組織超細化的研究[A];制造業(yè)與未來中國——2002年中國機械工程學會年會論文集[C];2002年
10 孟麗;肖靈;于鐘德;;電刺激參數(shù)與ECAP閾值關系的研究[A];中國聲學學會第十屆青年學術會議論文集[C];2013年
相關博士學位論文 前10條
1 錢陳豪;基于等徑角擠扭的SiC-Al粉末微—納結(jié)構(gòu)和力—熱性能[D];合肥工業(yè)大學;2015年
2 郭廷彪;ECAP制備超細晶銅的組織演變、織構(gòu)特征及力學性能研究[D];蘭州理工大學;2010年
3 房大然;等通道轉(zhuǎn)角擠壓(ECAP)鋁合金的力學性能和斷裂行為[D];天津大學;2007年
4 鄭志軍;ECAP制備的塊體納米晶304不銹鋼的組織演變、力學性能與腐蝕行為[D];華南理工大學;2012年
5 邊麗萍;ECAP擠壓亞共晶Al-Mg_2Si原位復合材料強韌化研究[D];太原理工大學;2011年
6 何運斌;ECAP超細晶ZK60鎂合金的制備及其相關基礎研究[D];中南大學;2011年
7 徐淑波;等通道彎角擠壓(ECAP)變形機理數(shù)值模擬與實驗研究[D];山東大學;2006年
8 宋杰;時效及ECAP處理無鎳Ti基記憶合金相變與力學行為研究[D];上海交通大學;2011年
9 劉曉燕;室溫ECAP變形工業(yè)純鈦變形行為及組織性能研究[D];西安建筑科技大學;2014年
10 盧慶亮;準晶增強Mg-Zn-Y合金的ECAP變形組織及力學性能[D];山東大學;2006年
相關碩士學位論文 前10條
1 陳曉強;超聲波輔助等徑角擠壓超細晶制備工藝及性能評估[D];深圳大學;2015年
2 王力;ECAP純鈦板材冷軋變形的組織與性能研究[D];西安建筑科技大學;2015年
3 陳曉奇;ECAP純鈦的晶粒取向分布計算機模擬[D];西安建筑科技大學;2015年
4 馬偉洲;純鈦板材ECAP變形及組織性能研究[D];西安建筑科技大學;2015年
5 胡玉軍;ECAP工藝對H65黃銅第二相狀態(tài)及性能影響的研究[D];江西理工大學;2015年
6 樊強;室溫等通道轉(zhuǎn)角擠壓(ECAP)對純鎂組織及性能的影響[D];太原理工大學;2013年
7 王康;外場對低溫ECAP制備1050合金退火組織與性能的影響[D];東北大學;2014年
8 陳洋;熱變形(壓縮、ECAP)-預回復對7085鋁合金擠壓材組織性能及各向異性的影響[D];江蘇大學;2016年
9 張景玉;熱變形(壓縮、ECAP)-預回復對超高強鋁合金Al-10.78Zn-2.78Mg-2.59Cu-0.22Zr-0.047Sr組織性能及各向異性的影響[D];江蘇大學;2016年
10 劉冰;ECAP和熱處理對CP-Ti和Ti-0.2Pd在模擬體液中耐腐蝕性的影響[D];南京航空航天大學;2015年
,本文編號:1411380
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1411380.html