船舶真火模擬訓(xùn)練控制系統(tǒng)的研究
本文選題:船舶真火 + FDS。 參考:《江蘇科技大學(xué)》2017年碩士論文
【摘要】:船舶火災(zāi)事故與損失呈逐年上升趨勢,各種類型船舶火災(zāi)、爆炸事故頻發(fā),造成了大量的財產(chǎn)損失與人員傷亡。由于船舶消防事故是小概率事件,單純依靠在實(shí)際的消防事故中取得的經(jīng)驗(yàn)是有限的,傳統(tǒng)消防訓(xùn)練機(jī)構(gòu)的訓(xùn)練環(huán)境與船舶火災(zāi)訓(xùn)練環(huán)境差異很大。國內(nèi)的消防訓(xùn)練系統(tǒng)多采用傳統(tǒng)方式,使用真實(shí)的燃料如油、柴火等生成消防訓(xùn)練環(huán)境,具有污染大,可控性差等不利因素。國外的消防機(jī)構(gòu)根據(jù)消防訓(xùn)練的特點(diǎn),使用燃?xì)庾鳛槿剂?配合訓(xùn)練道具和場景的布置來模擬火災(zāi)場景,但是并沒有針對船舶火災(zāi)事故開展消防訓(xùn)練系統(tǒng)的研究。因此,有必要建立一套能逼真地模擬船舶真實(shí)火災(zāi)環(huán)境的消防訓(xùn)練系統(tǒng)。首先,本文以船舶機(jī)艙油池火為研究對象,采用火災(zāi)動力學(xué)分析軟件FDS,建立了船舶機(jī)艙油池火物理模型,對船舶機(jī)艙火災(zāi)發(fā)展過程進(jìn)行了研究。根據(jù)FDS仿真結(jié)果,分析了火源功率、風(fēng)機(jī)流量、艙室體積和消防水對艙室火災(zāi)的影響,分別建立了相應(yīng)的多項(xiàng)式數(shù)學(xué)模型,為設(shè)計消防訓(xùn)練系統(tǒng)、分析船舶火災(zāi)危害程度提供了理論基礎(chǔ)。其次,針對船舶火災(zāi)安全評估,構(gòu)建了多組火災(zāi)場景,以FDS仿真結(jié)果為訓(xùn)練樣本,采用遺傳算法優(yōu)化支持向量機(jī)參數(shù)(GA-SVM)理論,建立了船舶火災(zāi)的安全評估模型。為了驗(yàn)證本文模型的準(zhǔn)確性,分別探討了支持向量機(jī)(SVM)模型和BP神經(jīng)網(wǎng)絡(luò)模型對船舶機(jī)艙火災(zāi)溫度的預(yù)測效果,仿真結(jié)果表明,GA-SVM模型具有較好的泛化能力和預(yù)測效果,為船舶火災(zāi)溫度間接計算及預(yù)測提出了一種新方法。然后,針對船舶火災(zāi)消防訓(xùn)練,采用多項(xiàng)式對以FDS的仿真結(jié)果進(jìn)行數(shù)據(jù)擬合,建立了多項(xiàng)式燃燒數(shù)學(xué)模型和滅火數(shù)學(xué)模型,在理想條件下(一定的風(fēng)機(jī)流量、忽略消防水損失等因素),實(shí)驗(yàn)結(jié)果表明這兩種模型可以滿足某些特定條件的消防訓(xùn)練需要,但存在一定的局限性。鑒于此,提出了基于火場氧氣濃度、火盆溫度、環(huán)境溫度以及火源功率的滅火有效性標(biāo)準(zhǔn),構(gòu)建了多組火災(zāi)場景,驗(yàn)證了這種消防訓(xùn)練滅火有效性標(biāo)準(zhǔn)的準(zhǔn)確性。最后以FDS仿真結(jié)果,采用GA-SVM模型,建立了不同維數(shù)的滅火模型,仿真結(jié)果證明,二維滅火模型不但可以縮短模型運(yùn)行時間,而且可以滿足消防訓(xùn)練的精度需求,為消防控制系統(tǒng)設(shè)計提供了依據(jù)。最后,根據(jù)訓(xùn)練系統(tǒng)要求,分別對訓(xùn)練控制系統(tǒng)和監(jiān)控系統(tǒng)的總體架構(gòu)進(jìn)行了設(shè)計。采用STEP 7-Micro/WIN SMART編程軟件對自檢、點(diǎn)火、燃燒和滅火等控制程序進(jìn)行了設(shè)計。采用力控ForceControl 7.0對訓(xùn)練監(jiān)控、曲線分析、事件記錄和系統(tǒng)設(shè)置等功能界面進(jìn)行了設(shè)計。采用OPC技術(shù)實(shí)現(xiàn)力控與MATLAB之間的信息交互,解決了訓(xùn)練模型控制算法實(shí)現(xiàn)的問題。
[Abstract]:Ship fire accidents and losses are rising year by year. Various types of ship fire and explosion accidents occur frequently, resulting in a large number of property losses and casualties. Because the ship fire accident is a small probability event, it is limited to rely solely on the experience gained in the actual fire fighting accident. The training environment of the traditional fire fighting training institution is very different from the ship fire training environment. The fire fighting training system in our country mostly adopts the traditional way, uses the real fuel such as oil, firewood and so on to form the fire fighting training environment, has the pollution big, the controllability is poor and so on unfavorable factor. According to the characteristics of fire fighting training, foreign fire control agencies use gas as fuel to simulate fire scene with training props and scene layout, but there is no research on fire training system for ship fire accident. Therefore, it is necessary to set up a fire fighting training system which can simulate the real fire environment of ships. Firstly, taking the oil pool fire in the engine room of the ship as the research object, the physical model of the oil pool fire in the engine room of the ship is established by using the fire dynamic analysis software FDS, and the development process of the fire in the engine room of the ship is studied. According to the simulation results of FDS, the influences of fire source power, fan flow rate, cabin volume and fire water on the cabin fire are analyzed, and the corresponding polynomial mathematical models are established to design the fire fighting training system. It provides a theoretical basis for analyzing the damage degree of ship fire. Secondly, according to the ship fire safety assessment, a multi-group fire scene is constructed. Taking the FDS simulation results as the training sample, using the genetic algorithm to optimize the parameters of support vector machine (SVM) theory, the safety assessment model of ship fire is established. In order to verify the veracity of this model, the prediction effect of support vector machine (SVM) model and BP neural network model on ship engine room fire temperature is discussed respectively. The simulation results show that the GA-SVM model has better generalization ability and prediction effect. A new method for indirect calculation and prediction of ship fire temperature is proposed. Then, in view of the fire fighting training of ship, the polynomial is used to fit the data of the simulation result of FDS, and the mathematical model of polynomial combustion and fire extinguishing is established. Under the ideal conditions (a certain fan flow rate, The experimental results show that the two models can meet the fire training needs of some special conditions, but there are some limitations. In view of this, a fire extinguishing efficiency standard based on oxygen concentration, fire basin temperature, ambient temperature and fire source power is proposed, and several fire scenarios are constructed, and the accuracy of the fire fighting effectiveness standard for fire fighting training is verified. Finally, based on the simulation results of FDS and GA-SVM model, the fire extinguishing model with different dimensions is established. The simulation results show that the two-dimensional fire extinguishing model can not only shorten the running time of the model, but also meet the precision requirement of fire fighting training. It provides the basis for the design of fire control system. Finally, according to the requirements of the training system, the overall structure of the training control system and the monitoring system are designed. The control programs of self-inspection, ignition, combustion and fire extinguishing are designed by using STEP 7-Micro/WIN SMART programming software. The function interface of training monitoring, curve analysis, event recording and system setting is designed by force control ForceControl 7.0. The information exchange between force control and MATLAB is realized by OPC technology, and the problem of training model control algorithm is solved.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U698.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陽曉劍;易星;彭政;劉維;屈江江;;真火模擬訓(xùn)練系統(tǒng)設(shè)計初探[J];消防科學(xué)與技術(shù);2015年09期
2 Ruiyu Chen;Shouxiang Lu;Bosi Zhang;Changhai Li;Siuming Lo;;Correlation of rate of gas temperature rise with mass loss rate in a ceiling vented compartment[J];Chinese Science Bulletin;2014年33期
3 侯岳;浦金云;;美海軍損管實(shí)作訓(xùn)練的特點(diǎn)及啟示[J];實(shí)驗(yàn)室科學(xué);2014年03期
4 陳偉根;滕黎;劉軍;彭尚怡;孫才新;;基于遺傳優(yōu)化支持向量機(jī)的變壓器繞組熱點(diǎn)溫度預(yù)測模型[J];電工技術(shù)學(xué)報;2014年01期
5 任凱;浦金云;吳向君;;一種無風(fēng)條件非限制空間滅火水流量計算模型[J];海軍工程大學(xué)學(xué)報;2013年06期
6 楊濱;金海峰;李延彬;宋子剛;李志奎;;艦載機(jī)火災(zāi)模擬訓(xùn)練裝置研究[J];船海工程;2013年04期
7 楊楓;浦金云;李其修;吳向君;;船舶封閉艙室池火災(zāi)溫度分布特性[J];海軍工程大學(xué)學(xué)報;2013年03期
8 李彤;;支持向量機(jī)的分解理論算法研究[J];河南科技;2013年02期
9 楊傳穎;李赫;;OPC技術(shù)發(fā)展綜述[J];儀器儀表用戶;2012年04期
10 要進(jìn)輝;趙慶海;李建華;;虛擬現(xiàn)實(shí)技術(shù)在消防特勤模擬訓(xùn)練中的應(yīng)用[J];安全;2012年03期
相關(guān)博士學(xué)位論文 前2條
1 周德闖;基于虛擬現(xiàn)實(shí)平臺的火災(zāi)場景計算與仿真研究[D];中國科學(xué)技術(shù)大學(xué);2009年
2 鄒高萬;船舶機(jī)艙火災(zāi)熱流場特性研究[D];哈爾濱工程大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉宇芳;高架倉庫滅火系統(tǒng)實(shí)體火災(zāi)實(shí)驗(yàn)和數(shù)值模擬研究[D];中國科學(xué)技術(shù)大學(xué);2015年
2 楊晨;基于Qt的監(jiān)控組態(tài)軟件的研究與開發(fā)[D];大連理工大學(xué);2015年
3 張志魁;基于Pyrosim和Pathfinder的建筑火災(zāi)數(shù)值模擬和安全疏散研究[D];天津理工大學(xué);2015年
4 樊琦;船舶電站自動控制系統(tǒng)的設(shè)計與研究[D];燕山大學(xué);2014年
5 張磊;基于虛擬現(xiàn)實(shí)技術(shù)的公共建筑火災(zāi)人員逃生訓(xùn)練系統(tǒng)研究[D];中國礦業(yè)大學(xué);2014年
6 聶武洋;艦船火災(zāi)損管仿真系統(tǒng)的可視化設(shè)計與研究[D];杭州電子科技大學(xué);2013年
7 馮燕萍;基于組態(tài)軟件的船舶電站虛擬操作系統(tǒng)設(shè)計[D];集美大學(xué);2012年
8 于相洋;基于多傳感信息融合的火災(zāi)預(yù)警技術(shù)研究[D];杭州電子科技大學(xué);2012年
9 譚科峰;基于FDS的水噴淋熱輻射防護(hù)效用研究[D];中國石油大學(xué);2011年
10 宋超;監(jiān)控組態(tài)軟件實(shí)時數(shù)據(jù)庫的研究與應(yīng)用[D];濟(jì)南大學(xué);2011年
,本文編號:1924599
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1924599.html