某鋼廠行車梁內(nèi)爆炸事故的數(shù)值模擬分析
發(fā)布時間:2018-03-04 04:28
本文選題:行車梁 切入點:密閉結(jié)構(gòu) 出處:《華僑大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著城市化的發(fā)展,密閉空間廣泛存在于公共交通系統(tǒng)、煤氣管道、爆炸倉庫、爆竹生產(chǎn)廠房等與日常生活息息相關(guān)的結(jié)構(gòu)當(dāng)中,在這些密閉空間結(jié)構(gòu)里,內(nèi)爆炸事故時有發(fā)生。其中,2012年5月,廣東某鋼廠內(nèi)一行車梁發(fā)生內(nèi)爆炸事故,造成重大人員傷亡及周圍設(shè)施不同程度的毀壞。該行車梁作為一類金屬密閉結(jié)構(gòu),其爆炸特點有別于其它結(jié)構(gòu),,有必要對其內(nèi)爆炸事故進行分析,探討未明爆炸過程及未知爆炸源的等效TNT當(dāng)量。 論文用高能炸藥代替行車梁爆炸事故中的未知爆炸源,對行車梁在內(nèi)爆炸荷載作用下的破壞過程和內(nèi)爆炸沖擊波傳播過程進行研究,主要研究方法和過程如下:(1)利用有限元軟件ANSYS/LS-DYNA進行空中自由爆炸的數(shù)值模擬,將數(shù)值計算結(jié)果與經(jīng)驗公式對比,計算結(jié)果吻合較好,證明論文數(shù)值模型及材料參數(shù)選取的可靠性,為結(jié)構(gòu)抗爆分析做準(zhǔn)備。(2)利用有限元軟件ANSYS/LS-DYNA建立合理的行車梁有限元計算模型,調(diào)整鋼材失效應(yīng)變與TNT當(dāng)量大小,將數(shù)值模擬結(jié)果與行車梁的實際破壞情況進行對比,當(dāng)兩者結(jié)果較為一致時,確定其時失效應(yīng)變和TNT當(dāng)量為合理值,并從行車梁壁板的應(yīng)力、應(yīng)變分布和位移時程曲線角度分析行車梁的破壞全過程。(3)考慮TNT當(dāng)量大小、爆炸點位置的影響,利用有限元軟件ANSYS/LS-DYNA建立模型進行模擬,分析行車梁內(nèi)腔的沖擊波壓力分布情況。 通過以上模擬分析,得到如下結(jié)論:(1)行車梁爆炸事故中未知爆炸源的等效TNT當(dāng)量為122.25kg;(2)行車梁所用鋼板的失效應(yīng)變值為0.35;(3)行車梁內(nèi)爆炸沖擊波沿著內(nèi)壁板傳播并在角隅堆積,行車梁腹板與下蓋板的連接為較弱的單面角焊縫連接以及下蓋板產(chǎn)生較大的位移響應(yīng),是造成行車梁破壞的主要原因;(4)提高焊縫強度,增大鋼材失效應(yīng)變以及加勁肋的設(shè)置有利于減小行車梁在爆炸作用下的破壞。
[Abstract]:With the development of urbanization, confined spaces are widely used in public transport systems, gas pipelines, explosive warehouses, firecracker production plants and other structures closely related to daily life. In these confined space structures, Internal explosion accidents occur from time to time. Among them, in May 2012, an internal explosion accident occurred in a driving beam of a steel works in Guangdong province, resulting in heavy casualties and damage to the surrounding facilities to varying degrees. The beam is a kind of metal closed structure. The explosion characteristics are different from those of other structures. It is necessary to analyze the internal explosion accident and to discuss the equivalent TNT equivalent of the unknown explosion source and the unknown explosion process. In this paper, the failure process and the propagation process of the inner explosion shock wave are studied by replacing the unknown explosion source in the train beam explosion with high explosive charge. The main research methods and processes are as follows: (1) using finite element software ANSYS/LS-DYNA to simulate the free explosion in the air, the numerical results are compared with the empirical formulas, and the calculated results are in good agreement with each other. It is proved that the reliability of the numerical model and the selection of material parameters is proved, and the structural anti-explosion analysis is prepared. The finite element software ANSYS/LS-DYNA is used to establish a reasonable finite element model of the crane beam, and the failure strain of steel and the equivalent value of TNT are adjusted. The numerical simulation results are compared with the actual failure conditions of the train beam. When the results are consistent, the time failure strain and TNT equivalent are determined as the reasonable values, and the stress of the train beam slab is obtained. Strain distribution and displacement time history curve angle are used to analyze the whole failure process of train beam. Considering the influence of TNT equivalent and the location of explosion point, the finite element software ANSYS/LS-DYNA is used to establish a model to simulate the shock wave pressure distribution in the inner cavity of the driving beam. Based on the above simulation analysis, it is concluded that the equivalent TNT equivalent of the unknown explosion source in the explosion accident of the beam is 122.25 kg / kg / 2) the failure strain value of the steel plate used in the beam is 0.35 / 3) the explosion shock wave propagates along the inner wall plate and accumulates in the corner corner of the beam. The connection between the web plate and the lower cover plate of the crane beam is a weak single side fillet weld joint and a large displacement response of the lower cover plate, which is the main reason for the failure of the crane beam. Increasing the failure strain of steel and the setting of stiffening rib can reduce the damage of the beam under the action of explosion.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:X928.7
【參考文獻】
相關(guān)期刊論文 前10條
1 管懷安;爆炸塔內(nèi)爆炸流場的數(shù)值模擬[J];安全與環(huán)境學(xué)報;2004年S1期
2 鐘方平,陳春毅,林俊德,劉晉,劉乾,樓溈濤,張向榮;雙層圓柱形爆炸容器彈塑性結(jié)構(gòu)響應(yīng)的實驗研究[J];兵工學(xué)報;2000年03期
3 李秀地;鄭穎人;李利晟;;裝藥位置及形狀對某坑道中沖擊波壓力的影響研究[J];爆破;2005年04期
4 易仰賢;空爆沖擊波馬赫反射近似計算[J];爆炸與沖擊;1983年02期
5 陳志林;空氣沖擊波遇運動剛壁反射時壁面超壓的計算[J];爆炸與沖擊;1985年04期
6 趙士達(dá);爆炸容器[J];爆炸與沖擊;1989年01期
7 楊科之,楊秀敏;坑道內(nèi)化爆沖擊波的傳播規(guī)律[J];爆炸與沖擊;2003年01期
8 張亞軍,張夢萍,徐勝利,張鵬;爆炸容器內(nèi)沖擊波系演化及殼體響應(yīng)的數(shù)值研究[J];爆炸與沖擊;2003年04期
9 龐偉賓,何翔,李茂生,任輝啟;空氣沖擊波在坑道內(nèi)走時規(guī)律的實驗研究[J];爆炸與沖擊;2003年06期
10 田力,李忠獻;地下爆炸沖擊波引起的基底滑移隔震建筑的動力響應(yīng)[J];爆炸與沖擊;2004年01期
本文編號:1564144
本文鏈接:http://sikaile.net/kejilunwen/anquangongcheng/1564144.html
最近更新
教材專著