有限元/接觸法計(jì)算含滾動(dòng)元件軸承的行星齒輪的準(zhǔn)靜態(tài)相應(yīng)、齒根應(yīng)力和行星輪負(fù)載均衡
發(fā)布時(shí)間:2021-02-20 23:48
該研究運(yùn)用最前沿的有限元/接觸方法研究了含滾動(dòng)元件軸承的行星齒輪的準(zhǔn)靜態(tài)相應(yīng)、負(fù)載均衡和齒根應(yīng)力。有限元/接觸方法在過去的研究中被廣泛運(yùn)用于精確計(jì)算齒輪間的彈性接觸。大部分已知的關(guān)于行星齒輪的研究使用集中剛度矩陣代替含滾動(dòng)元件軸承。該研究首先依據(jù)真實(shí)軸承產(chǎn)品建立了二維獨(dú)立軸承模型,并通過準(zhǔn)靜態(tài)分析探究獨(dú)立軸承模型的剛度和形變特性。該模型探明了軸承內(nèi)滾動(dòng)元件的運(yùn)動(dòng)學(xué)軌跡導(dǎo)致的軸承剛度和偏移的周期性變化,和載荷與徑向間隙變化導(dǎo)致的非線性剛度變化。隨后,該研究建立了基于真實(shí)直升機(jī)應(yīng)用的二維行星齒輪模型,并在分別應(yīng)用剛度矩陣軸承模型和接觸軸承模型的情況下進(jìn)行準(zhǔn)靜態(tài)分析。當(dāng)使用剛度矩陣軸承時(shí),因軸承剛度的非線性特性,模型對行星齒輪中央部件的部分自由度均值的計(jì)算存在顯著誤差。當(dāng)使用接觸軸承時(shí),模型還捕捉到了由周期性變化的軸承偏移導(dǎo)致的行星架旋轉(zhuǎn)自由度內(nèi)的低頻成分,和由周期性變化的軸承剛度導(dǎo)致的行星輪負(fù)載的調(diào)制現(xiàn)象。針對載荷和間隙的參數(shù)分析表明該低頻組分和調(diào)制在多種工況下均有顯著效應(yīng)。行星齒輪軸位置誤差會(huì)造成不均衡的行星輪負(fù)載,但該現(xiàn)象對軸承的建模方式并不敏感。最后,該研究建立了基于同一系統(tǒng)的三維行...
【文章來源】:上海交通大學(xué)上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:110 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Objectives
1.2 Background
1.3 Literature review
1.4 The finite element/contact mechanics method
1.5 Modeling and researching strategy
1.5.1 Modeling the bearing
1.5.2 Modeling the planetary gear
1.6 Contribution of this research
1.7 Scope and organization of this research
Chapter 2 Properties of rolling element planet bearings
2.1 Description of the bearing model
2.2 Bearing stiffness calculation
2.3 Parametric studies
2.3.1 Parametric study on bearing clearance
2.3.2 Parametric study on bearing load
2.3.3 Discussions on bearing parametric studies
Chapter 3 Quasi-static analysis of two-dimensional planetary gear model with stiffness matrix bearings
3.1 Description of the two-dimensional planetary gear model
3.2 Quasi-static analysis
3.2.1 Central member response
3.2.2 Mesh stiffness calculation
3.2.3 Planet load sharing
3.3 Dynamic analysis
Chapter 4 Quasi-static analysis of two-dimensional planetary gear model with full contact bearings
4.1 Comparison of planetary gear models with stiffness matrix bearings and full contact bearings
4.1.1 Carrier rotational deflection
4.1.2 Planet load sharing
4.2 Parametric studies
4.2.1 Parametric study on bearing clearance
4.2.1.1 Carrier rotational deflection
4.2.1.2 Planet load sharing
4.2.2 Parametric study on planetary gear input torque
4.2.2.1 Carrier rotational deflection
4.2.2.2 Planet load sharing
4.2.3 Discussion on planetary gear parametric studies
4.3 Effect of planet rim compliance
4.4 Error case study
Chapter 5 Static analysis of three-dimensional planetary gear model with full contact bearings
5.1 Description of the model
5.2 Static analysis on model with cylindrical bearings
5.2.1 Bearing race deformation
5.2.2 Tooth root stress
5.2.3 Tooth contact pressure
5.2.4 Static transmission error
5.2.5 Load sharing factor
5.3 Static analysis on model with spherical bearings
5.3.1 Bearing race deformation
5.3.2 Tooth root stress
5.3.3 Tooth contact pressure, static transmission error, and load sharing factor
5.4 Discussions
Chapter 6 Static analysis of three-dimensional planetary gear model with stiffness matrix bearings
6.1 Description of the model
6.2 Static analysis with varying bearing stiffness
6.2.1 Bearing race deformation
6.2.2 Tooth root stress
6.2.3 Tooth contact pressure, static transmission error, and load sharing factor
6.3 Static analysis with tuned bearing race thickness and compliance
6.3.1 Bearing race deformation and tooth root stress with tuning bearing race thickness
6.3.2 Bearing race deformation and tooth root stress with tuning bearing race compliance
6.3.3 Tooth contact pressure, static transmission error, and load sharing factor undertuned bearing race thickness and compliance
6.4 Discussions
Chapter 7 Static analysis on two-dimensional planetary gear model as simplified three-dimensionalmodel
7.1 Description of the planetary gear model
7.2 Static analysis of model with full contact bearings
7.2.1 Bearing race deformation
7.2.2 Tooth root stress
7.2.3 Tooth contact pressure, static transmission error, and load sharing factor in two-dimensional model with full contact bearings
7.3 Static analysis of model with stiffness matrix bearings
7.4 Discussions
Chapter 8 Conclusions and future work
8.1 Conclusions
8.2 Limitations in this research and future work
Acknowledgements
Appendix A
Appendix B
Appendix C
Appendix D
Bibliography
本文編號:3043534
【文章來源】:上海交通大學(xué)上海市 211工程院校 985工程院校 教育部直屬院校
【文章頁數(shù)】:110 頁
【學(xué)位級別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 Objectives
1.2 Background
1.3 Literature review
1.4 The finite element/contact mechanics method
1.5 Modeling and researching strategy
1.5.1 Modeling the bearing
1.5.2 Modeling the planetary gear
1.6 Contribution of this research
1.7 Scope and organization of this research
Chapter 2 Properties of rolling element planet bearings
2.1 Description of the bearing model
2.2 Bearing stiffness calculation
2.3 Parametric studies
2.3.1 Parametric study on bearing clearance
2.3.2 Parametric study on bearing load
2.3.3 Discussions on bearing parametric studies
Chapter 3 Quasi-static analysis of two-dimensional planetary gear model with stiffness matrix bearings
3.1 Description of the two-dimensional planetary gear model
3.2 Quasi-static analysis
3.2.1 Central member response
3.2.2 Mesh stiffness calculation
3.2.3 Planet load sharing
3.3 Dynamic analysis
Chapter 4 Quasi-static analysis of two-dimensional planetary gear model with full contact bearings
4.1 Comparison of planetary gear models with stiffness matrix bearings and full contact bearings
4.1.1 Carrier rotational deflection
4.1.2 Planet load sharing
4.2 Parametric studies
4.2.1 Parametric study on bearing clearance
4.2.1.1 Carrier rotational deflection
4.2.1.2 Planet load sharing
4.2.2 Parametric study on planetary gear input torque
4.2.2.1 Carrier rotational deflection
4.2.2.2 Planet load sharing
4.2.3 Discussion on planetary gear parametric studies
4.3 Effect of planet rim compliance
4.4 Error case study
Chapter 5 Static analysis of three-dimensional planetary gear model with full contact bearings
5.1 Description of the model
5.2 Static analysis on model with cylindrical bearings
5.2.1 Bearing race deformation
5.2.2 Tooth root stress
5.2.3 Tooth contact pressure
5.2.4 Static transmission error
5.2.5 Load sharing factor
5.3 Static analysis on model with spherical bearings
5.3.1 Bearing race deformation
5.3.2 Tooth root stress
5.3.3 Tooth contact pressure, static transmission error, and load sharing factor
5.4 Discussions
Chapter 6 Static analysis of three-dimensional planetary gear model with stiffness matrix bearings
6.1 Description of the model
6.2 Static analysis with varying bearing stiffness
6.2.1 Bearing race deformation
6.2.2 Tooth root stress
6.2.3 Tooth contact pressure, static transmission error, and load sharing factor
6.3 Static analysis with tuned bearing race thickness and compliance
6.3.1 Bearing race deformation and tooth root stress with tuning bearing race thickness
6.3.2 Bearing race deformation and tooth root stress with tuning bearing race compliance
6.3.3 Tooth contact pressure, static transmission error, and load sharing factor undertuned bearing race thickness and compliance
6.4 Discussions
Chapter 7 Static analysis on two-dimensional planetary gear model as simplified three-dimensionalmodel
7.1 Description of the planetary gear model
7.2 Static analysis of model with full contact bearings
7.2.1 Bearing race deformation
7.2.2 Tooth root stress
7.2.3 Tooth contact pressure, static transmission error, and load sharing factor in two-dimensional model with full contact bearings
7.3 Static analysis of model with stiffness matrix bearings
7.4 Discussions
Chapter 8 Conclusions and future work
8.1 Conclusions
8.2 Limitations in this research and future work
Acknowledgements
Appendix A
Appendix B
Appendix C
Appendix D
Bibliography
本文編號:3043534
本文鏈接:http://sikaile.net/jixiegongchenglunwen/3043534.html
最近更新
教材專著