基于機器視覺的滑動軸承缺陷檢測系統(tǒng)設計
發(fā)布時間:2019-06-30 22:01
【摘要】:針對滑動軸承生產過程中存在的檢測速度慢、自動化水平低、檢測精度低等問題,提出一種基于機器視覺的滑動軸承內表面缺陷檢測系統(tǒng)的設計方案,實現(xiàn)了軸承體的自動檢測功能。首先設計了一種實驗檢測平臺用于獲取滑動軸承內表面的圖像;通過基于形狀的模板匹配算法對預處理后的圖像進行匹配,實現(xiàn)對目標物體與缺陷區(qū)域的快速定位;為了實現(xiàn)對缺陷的提取,提出了一種基于區(qū)域灰度值的圖像分割方法與基于區(qū)域形態(tài)學處理的特征提取方法。實驗表明,系統(tǒng)的檢測效果與傳統(tǒng)的檢測方法相比,具有明顯的優(yōu)越性,為滑動軸承內表面檢測提供了新的方法。
[Abstract]:In order to solve the problems existing in the production process of sliding bearing, such as slow detection speed, low automation level and low detection accuracy, a design scheme of sliding bearing inner surface defect detection system based on machine vision is proposed, and the automatic detection function of bearing body is realized. Firstly, an experimental detection platform is designed to obtain the image of the inner surface of the sliding bearing; the preprocessed image is matched by the shape-based template matching algorithm to realize the fast location of the target object and the defect area; in order to realize the defect extraction, an image segmentation method based on region gray value and a feature extraction method based on region morphology processing are proposed. The experimental results show that compared with the traditional detection method, the detection effect of the system has obvious advantages, and provides a new method for the inner surface detection of sliding bearing.
【作者單位】: 江蘇大學機械工程學院;
【分類號】:TH133.31;TP391.41
[Abstract]:In order to solve the problems existing in the production process of sliding bearing, such as slow detection speed, low automation level and low detection accuracy, a design scheme of sliding bearing inner surface defect detection system based on machine vision is proposed, and the automatic detection function of bearing body is realized. Firstly, an experimental detection platform is designed to obtain the image of the inner surface of the sliding bearing; the preprocessed image is matched by the shape-based template matching algorithm to realize the fast location of the target object and the defect area; in order to realize the defect extraction, an image segmentation method based on region gray value and a feature extraction method based on region morphology processing are proposed. The experimental results show that compared with the traditional detection method, the detection effect of the system has obvious advantages, and provides a new method for the inner surface detection of sliding bearing.
【作者單位】: 江蘇大學機械工程學院;
【分類號】:TH133.31;TP391.41
【參考文獻】
相關期刊論文 前7條
1 崔明;顧啟民;黃震;;基于機器視覺的軸承滾動體缺陷檢測算法研究[J];組合機床與自動化加工技術;2015年11期
2 陳龍;侯普華;王進;朱文博;;軸承表面缺陷類型識別算法[J];計算機應用研究;2015年05期
3 袁清珂;張振亞;吳暉輝;畢慶;陳圣明;;基于機器視覺系統(tǒng)的自動檢測系統(tǒng)設計與開發(fā)[J];組合機床與自動化加工技術;2014年11期
4 徐琛;溫振市;毛亞文;白瑞林;;軸承表面缺陷檢測系統(tǒng)的研究與開發(fā)[J];計算機應用與軟件;2013年10期
5 陶青平;吳錫生;;快速檢測軸承表面缺陷方法的研究[J];微電子學與計算機;2011年10期
6 張巧芬;高健;;機器視覺中照明技術的研究進展[J];照明工程學報;2011年02期
7 陳躍飛;王恒迪;鄧四二;;機器視覺檢測技術中軸承的定位算法[J];軸承;2010年04期
【共引文獻】
相關期刊論文 前10條
1 袁慶松;g,
本文編號:2508293
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2508293.html