基于小波包分解與權(quán)重包絡(luò)譜的滾動軸承故障特征增強(qiáng)
發(fā)布時間:2019-05-24 23:54
【摘要】:針對小波包分解(wavelet packet decomposition,WPD)在對低信噪比信號處理時帶內(nèi)噪聲較大,無法準(zhǔn)確提取故障信息的問題,提出一種基于小波包分解與權(quán)重包絡(luò)譜的滾動軸承故障特征增強(qiáng)方法。首先對原始信號進(jìn)行三層小波包分解,并選其最優(yōu)系數(shù)以初步減少噪聲干擾,使故障特征信息得到一次增強(qiáng);而后基于非局部均值算法(Non-Local Means,NLM)對最優(yōu)系數(shù)加權(quán)運(yùn)算得到權(quán)重包絡(luò)曲線,使故障沖擊在權(quán)重角度得到二次增強(qiáng);最后對權(quán)重包絡(luò)曲線包絡(luò)譜分析診斷出故障類型。仿真信號及實(shí)驗(yàn)室信號驗(yàn)證了本文方法的有效性及實(shí)用性。
[Abstract]:In order to solve the problem that wavelet packet decomposition (wavelet packet decomposition,WPD) can not extract fault information accurately when dealing with low signal-to-noise ratio (SNR) signals, a fault feature enhancement method for rolling bearings based on wavelet packet decomposition and weight envelope spectrum is proposed. Firstly, the original signal is decomposed by three-layer wavelet packet, and the optimal coefficient is selected to reduce the noise interference and enhance the fault feature information once. Then, based on the non-local mean algorithm (Non-Local Means,NLM), the weight envelope curve is obtained by weighted operation of the optimal coefficient, so that the fault impact is enhanced twice at the weight angle. Finally, the fault type is diagnosed by the envelope spectrum analysis of the weight envelope curve. The effectiveness and practicability of the proposed method are verified by simulation signals and laboratory signals.
【作者單位】: 華東交通大學(xué)機(jī)電與車輛工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(51665013,51265010) 載運(yùn)工具與裝備教育部重點(diǎn)實(shí)驗(yàn)室資助課題(15JD02) 江西省青年科學(xué)基金資助項(xiàng)目(20161BAB216134)
【分類號】:TH133.33
本文編號:2485298
[Abstract]:In order to solve the problem that wavelet packet decomposition (wavelet packet decomposition,WPD) can not extract fault information accurately when dealing with low signal-to-noise ratio (SNR) signals, a fault feature enhancement method for rolling bearings based on wavelet packet decomposition and weight envelope spectrum is proposed. Firstly, the original signal is decomposed by three-layer wavelet packet, and the optimal coefficient is selected to reduce the noise interference and enhance the fault feature information once. Then, based on the non-local mean algorithm (Non-Local Means,NLM), the weight envelope curve is obtained by weighted operation of the optimal coefficient, so that the fault impact is enhanced twice at the weight angle. Finally, the fault type is diagnosed by the envelope spectrum analysis of the weight envelope curve. The effectiveness and practicability of the proposed method are verified by simulation signals and laboratory signals.
【作者單位】: 華東交通大學(xué)機(jī)電與車輛工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(51665013,51265010) 載運(yùn)工具與裝備教育部重點(diǎn)實(shí)驗(yàn)室資助課題(15JD02) 江西省青年科學(xué)基金資助項(xiàng)目(20161BAB216134)
【分類號】:TH133.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 錢蘇翔;楊世錫;焦衛(wèi)東;胡紅生;;基于獨(dú)立分量分析與小波包分解的混疊聲源信號波形恢復(fù)[J];中國機(jī)械工程;2010年24期
2 劉曉波,黃其柏,孫康;小波包分解及其在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用[J];風(fēng)機(jī)技術(shù);2004年06期
3 李自國;郝偉;李凌均;;基于小波包分解和支持向量數(shù)據(jù)描述的故障診斷方法[J];機(jī)械強(qiáng)度;2007年03期
4 任世美;;基于小波包分解的轉(zhuǎn)子葉片裂紋故障特征分析[J];冶金設(shè)備;2005年06期
5 王軒;王莉;魏蔚;;瞬時功率小波包分解法在軸承故障診斷中的應(yīng)用[J];軸承;2010年10期
6 葉瑞召;李萬紅;;基于小波包分解和BP神經(jīng)網(wǎng)絡(luò)的軸承故障診斷[J];軸承;2012年10期
7 王洪剛,鄭海起,馬吉勝,欒軍英;變速箱故障聲壓信號的小波包分解與診斷[J];振動與沖擊;2001年02期
8 ;[J];;年期
相關(guān)會議論文 前1條
1 王志剛;呂勇;李友榮;李方;;基于自適應(yīng)諧波小波包分解的齒輪故障診斷方法[A];第六屆全國信息獲取與處理學(xué)術(shù)會議論文集(2)[C];2008年
,本文編號:2485298
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2485298.html
最近更新
教材專著