基于局部均值分解的旋轉(zhuǎn)機(jī)械故障診斷技術(shù)研究
[Abstract]:Rotating machinery accounts for a large proportion of modern machinery and equipment, so it has become an important research topic to carry out condition monitoring and fault diagnosis for it. In fault diagnosis, the key problem is to extract fault feature information and fault type identification. Local mean decomposition (Local Mean Decomposition,LMD) time-frequency analysis method has many advantages in the analysis of mechanical vibration signals, and is widely used in fault feature extraction of rotating machinery. However, there are still some shortcomings in local mean decomposition that need to be improved. In this paper, the shortcomings and improvement of LMD time-frequency analysis method are studied, and the pattern recognition method of fault type and the development and application of fault diagnosis system are studied. Firstly, aiming at the problem of endpoint effect in LMD, the causes are analyzed, and an improved method, the maximum similarity coefficient method, is proposed to verify the effectiveness of the method through the comparative analysis of simulation and experimental research. Secondly, in order to solve the problem that it is difficult to extract weak high frequency signals in rotating machinery fault feature extraction, and the false frequency problem of LMD decomposition results, a differential local mean decomposition (Differential Local Mean Decomposition, is proposed. DLMD) fault diagnosis method. The feasibility and effectiveness of the method are verified by simulation. Through the research and analysis of the compound fault signal in practical engineering, the feasibility of this method in practical application is verified. Then, aiming at the pattern recognition of rotating machinery fault types, the LMD method is combined with sample entropy and fuzzy clustering, and a rotating machinery fault diagnosis method based on local mean decomposition, sample entropy and fuzzy clustering is proposed. In this method, the vibration signal of rotating machinery is decomposed by LMD, and the sample entropy is obtained by decomposing the product function (Product Function,PF), which is used as the eigenvector to establish the fuzzy matrix, and the fuzzy clustering analysis and pattern recognition are carried out. Realize the classification and diagnosis of faults. Finally, combined with MATLAB and Lab VIEW, the fault diagnosis platform of rotating machinery is developed, and the design of mechanical fault diagnosis interface and the processing of fault data are carried out by using the advantages of Lab VIEW graphical programming language and the powerful data processing ability of MATLAB.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH165.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 徐春林,江志農(nóng),肖英;基于Hilbert變換的包絡(luò)分析及其在機(jī)械故障診斷中的應(yīng)用[J];機(jī)電工程技術(shù);2004年07期
2 何成兵,顧煜炯,楊昆;一種新的轉(zhuǎn)子碰摩故障診斷特征的研究[J];機(jī)械強(qiáng)度;2003年04期
3 ;Practical implementation of Hilbert-Huang Transform algorithm[J];Acta Oceanologica Sinica;2003年01期
4 曾新紅;林春熙;蘇一丹;;基于LabVIEW與MATLAB的電機(jī)監(jiān)測與故障診斷[J];機(jī)械工程與自動化;2014年04期
5 佟俐;潘宏俠;胡田;;基于LabVIEW的機(jī)電設(shè)備狀態(tài)監(jiān)測與故障診斷系統(tǒng)[J];儀表技術(shù)與傳感器;2008年07期
6 陳鐵華,陳啟卷;模糊聚類分析在水電機(jī)組振動故障診斷中的應(yīng)用[J];中國電機(jī)工程學(xué)報;2002年03期
相關(guān)博士學(xué)位論文 前1條
1 鞠萍華;旋轉(zhuǎn)機(jī)械早期故障特征提取的時頻分析方法研究[D];重慶大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 陳平;信號瞬時頻率的估計方法及其應(yīng)用[D];山東大學(xué);2007年
2 譚宇碩;基于改進(jìn)HHT方法的旋轉(zhuǎn)機(jī)械故障診斷的研究[D];華北電力大學(xué)(河北);2007年
3 高二山;基于現(xiàn)代信號分析方法的滾動軸承故障診斷的研究[D];華北電力大學(xué)(北京);2009年
4 羊初發(fā);基于EMD的時頻分析與濾波研究[D];電子科技大學(xué);2009年
5 田佳;基于模糊的設(shè)計模式挖掘與重構(gòu)[D];大連理工大學(xué);2009年
6 許哲;局部均值分解在信號處理中的應(yīng)用[D];西安電子科技大學(xué);2013年
7 李姍姍;基于LMD時頻分析的旋轉(zhuǎn)機(jī)械故障特征提取方法研究[D];燕山大學(xué);2013年
,本文編號:2484844
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2484844.html