基于ADAMS的角接觸球軸承的動力學分析與結構優(yōu)化
[Abstract]:Angular contact ball bearings are widely used in various high speed rotating shafting because of their good high speed performance and bearing capacity. One of the main failure reasons of high speed angular contact ball bearing is the instability of bearing operation, so the design of cage is very important. The research and practice show that the failure of high speed shaft system caused by the instability of cage accounts for a large proportion of the failure of high speed angular contact ball bearing during operation. Therefore, it is of great theoretical and practical significance to study the dynamic characteristics of high speed angular contact ball bearings and the stability of cages, and to optimize the structure of bearings and improve the stability of bearings. Based on the dynamic analysis theory of rolling bearing, combined with the related theories of bearing contact, elastohydrodynamic lubrication, friction and so on, the relationship between the components of angular contact ball bearing is systematically and comprehensively analyzed in this paper. The dynamic differential equation of angular contact ball bearing is established. The dynamics module of angular contact ball bearing is developed by using ADAMS software. The custom subroutine between bearing components is written in Fortran language, and the compiled dynamic link library file (* .dll) is linked to ADAMS/Solver. The dynamic simulation of high speed angular contact ball bearing is realized. Taking an angular contact ball bearing as an example, the influence of bearing structure parameters and typical working conditions on the dynamic characteristics of the bearing is analyzed when the cage is square hole and circular hole, respectively. The results show that: 1. Increasing the axial load or increasing the rotating speed is beneficial to the stability of the cage, but it will increase the average friction torque between the cage and the guide surface of the jacket ring. When the axial load is small, the stability of the round pocket hole cage is better than that of the square pocket hole, but when the axial load is large, the stability of the square pocket hole cage is slightly better than that of the round pocket hole. When the rotating speed is small, the stability of the square hole cage is slightly better than that of the round pocket hole, but when the rotating speed is large, the stability of the two cages is basically the same. 2. The increase of radial load will lead to the decrease of the stability of the cage, but can reduce the average friction torque between the cage and the guide surface of the outer ring: the stability of the round hole cage is slightly better than that of the square hole cage. 3. With the increase of clearance ratio, the instability of square hole and round hole cage increases. When the clearance ratio c is less than 1, the instability of the two shape cages is basically the same, while when the clearance ratio c is greater than 1, the stability of the square hole cage is worse than that of the round pocket hole. The average lubrication friction torque between the square hole cage and the guide surface of the outer ring is on the rise, while the average collision friction moment is the opposite. 4. With the increase of groove curvature, the instability of square hole and circular hole cage decreases at first and then increases. In this paper, the influence of the change of outer groove curvature on the stability of cage is greater than that of inner groove curvature. When the groove curvature is fi=0.54,fo=0.54, the instability of the two cages is the lowest. 5. Under any same working condition, the average collision friction torque between the square hole cage and the guide surface of the outer ring is smaller than that of the circular hole, while the average lubrication friction moment is the opposite. The change of average collision friction torque is obviously larger than that of lubrication friction torque.
【學位授予單位】:廣東工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TH133.3
【相似文獻】
相關期刊論文 前10條
1 徐榮瑜;角接觸球軸承旋滾比的計算方法[J];軸承;1994年05期
2 孫福;新型角接觸球軸承誕生[J];機床與液壓;1997年01期
3 楊咸啟,姜韶峰,陳俊杰,王衛(wèi)國;高速角接觸球軸承優(yōu)化設計[J];軸承;2000年01期
4 蔡亞新;配對角接觸球軸承凸出量的設計及誤差分析[J];軸承;2000年03期
5 蔣興奇,馬家駒,趙聯春;高速精密角接觸球軸承熱分析[J];軸承;2000年08期
6 侯廣軍;角接觸球軸承預加負荷值的計算、實施與測量[J];磨床與磨削;2000年01期
7 李松生,裴翠紅,王永堅;高速精密角接觸球軸承支承特性分析[J];軸承;2001年02期
8 李小弟,崔紅娟;一對角接觸球軸承安裝位置的研究[J];機械;2002年S1期
9 張錫昌,王鴻偉;角接觸球軸承的特性與應用[J];軸承;2003年09期
10 肖曙紅,黃曉明,張伯霖;高速角接觸球軸承發(fā)熱及其影響因素[J];機床與液壓;2004年12期
相關會議論文 前3條
1 李香;孫茂文;;關于組配角接觸球軸承組配率的研究與分析[A];十三省區(qū)市機械工程學會第五屆科技論壇論文集[C];2009年
2 程超;汪久根;;基于遺傳算法的雙列角接觸球軸承優(yōu)化設計[A];第十一屆全國摩擦學大會論文集[C];2013年
3 吳非;燕萍;張浩宇;趙芳;韓超;;精密配對角接觸球軸承7207BTN1/P5DB關鍵技術研究[A];十三省區(qū)市機械工程學會第五屆科技論壇論文集[C];2009年
相關碩士學位論文 前10條
1 徐立暉;高速電主軸角接觸球軸承力學特性研究[D];浙江大學;2015年
2 陳思佳;角接觸球軸承安裝預緊對轉子動力學性能影響[D];華東理工大學;2015年
3 梁群;角接觸球軸承的熱特性分析[D];青島理工大學;2015年
4 唐建;高速精密角接觸球軸承油氣兩相流動潤滑分析[D];吉林大學;2016年
5 李琦;基于ADAMS的角接觸球軸承的動力學分析與結構優(yōu)化[D];廣東工業(yè)大學;2016年
6 黃叢領;電主軸角接觸球軸承摩擦學和動力學耦合特性分析[D];蘭州理工大學;2013年
7 程超;角接觸球軸承的摩擦學優(yōu)化設計[D];浙江大學;2014年
8 高磊;混合陶瓷角接觸球軸承有限元仿真分析[D];天津大學;2007年
9 王偉利;混合陶瓷角接觸球軸承的熱機耦合分析[D];天津大學;2007年
10 張海濤;混合陶瓷角接觸球軸承的有限元分析及其仿真初探[D];天津大學;2006年
,本文編號:2483732
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2483732.html