端面扭動(dòng)統(tǒng)計(jì)摩擦模型研究
[Abstract]:In this paper, using the friction contact model of two spheres (CEB,KE and BKE model), the friction model of rough surface micro-convex body contact considering the interaction between adjacent micro-convex bodies is established. The surface characteristics of the rough surface are described by the probability distribution method. The slip mechanism of the micro convex body is defined based on the height and tangential displacement of the micro convex body. The method of statistical summation is used to extend the micro convex body scale friction contact to the macro scale rough surface contact reciprocating sliding friction contact. The contact face is differentiated, and the reciprocating sliding friction model is modified so that it can be applied to each differential region. The torsional friction model of the end face is established by using the method of statistical summation. The end torsional friction behavior of MC nylon-45 # steel was simulated by using the end torsional friction model, and the surface roughness and positive pressure of the end face were also studied, and the friction behavior of the end face of Nylon-45 # steel was simulated. The influence of nominal contact area on torsional friction behavior of end face is simulated. The end-face torsional friction behavior of MC nylon-45# steel, brass-45# steel and 45# steel-45# steel was studied by using a self-made end-face torsional friction tester. The prediction accuracy of the friction model was verified by experiments. The main conclusions are as follows: 1. The microconvex friction model established by BKE contact model can adapt to the larger normal deformation and has better applicability. 2, in the reciprocating sliding friction model, The reciprocating stroke determines the shape of F未 (friction displacement) curve (elliptical, parallelogram or rectangle). The initial complete slip position (the position where the friction force reaches the maximum for the first time) is not affected by the reciprocating stroke. The surface roughness has no effect on the shape of F-未 curve and the initial complete slip position. With the decrease of roughness (less than Ra1.6), the friction force increases rapidly, and when the roughness is larger than Ra1.6, the friction force tends to increase. The friction force is linearly related to the positive pressure, and the friction force increases with the increase of the positive pressure. The change of the positive pressure has no effect on the shape of the F-未 curve and the initial complete slip position. 3. The torsional friction model of the end face is used to contact the mechanical properties of the material. Roughness parameters, angular displacement and positive pressure are input parameters to simulate torsional contact of rough surface and output T-(friction torque-angular displacement) curve. By using the formula for judging the slip state of the micro-convex body and the height distribution function of the micro-convex body, the relationship between the proportion of the slip micro-convex body and the angular displacement and the complete slip radius of the contact end face under different angular displacement can be calculated. The maximum torque increases linearly with the increase of contact radius (nominal contact area). Both the slip ratio and the complete slip radius of the micro-convex body increase with the initial complete slip of the contact interface. Too large or too small surface roughness will increase the maximum torque, but the change of surface roughness has no effect on the slip mechanism of the contact interface, the initial complete slip position, the complete slip radius and the slip ratio of the contact microconvex body. The change of contact pressure has no effect on the slip mechanism and initial complete slip position, but has a great influence on the maximum torque. The maximum torque increases linearly with the increase of contact pressure. In addition, the change of the positive pressure has no effect on the slip ratio and the complete slip radius of the contact micro-convex body when the initial complete slip occurs.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH117
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 冷永勝,王國(guó)誠(chéng),黃炎;名義平表面無(wú)窮微凸體群的非Hertz接觸[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年05期
2 李冰;羅玉軍;高中庸;梁輝;;微凸體油膜彈性支承效應(yīng)的刨切試驗(yàn)驗(yàn)證研究[J];制造技術(shù)與機(jī)床;2007年04期
3 李冰;羅玉軍;高中庸;梁輝;;微凸體油膜彈性支承效應(yīng)的刨切試驗(yàn)驗(yàn)證研究[J];機(jī)械設(shè)計(jì)與制造;2007年05期
4 沈萌紅,全永昕,周桂如;混合潤(rùn)滑時(shí)各向異性粗糙表面微凸體載荷分配的研究[J];浙江大學(xué)學(xué)報(bào)(自然科學(xué)版);1990年06期
5 朱林波;莊艷;洪軍;楊國(guó)慶;;一種考慮側(cè)接觸的微凸體彈塑性接觸力學(xué)模型[J];西安交通大學(xué)學(xué)報(bào);2013年11期
6 劉瑩,陳大融,楊文言;軋輥表面微凸體形貌激光毛化技術(shù)的試驗(yàn)研究[J];機(jī)械工程學(xué)報(bào);2003年07期
7 胡兆穩(wěn);劉q;王偉;劉小君;;塑性成形表面微凸體平坦化行為研究[J];潤(rùn)滑與密封;2013年02期
8 趙強(qiáng);李皋;肖貴林;辛春彥;程純勇;;單裂隙滲流有限元數(shù)值仿真研究[J];水資源與水工程學(xué)報(bào);2014年02期
9 伍麗峰;高中庸;;基于正交刨切實(shí)驗(yàn)的微凸體油膜彈性支承效應(yīng)研究[J];潤(rùn)滑與密封;2009年08期
10 楊川江;王偉;馬樹全;劉q;;表面微凸體形態(tài)對(duì)三體摩擦界面間隙的影響[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年06期
相關(guān)會(huì)議論文 前3條
1 張占立;丁建寧;楊繼昌;胡友耀;解國(guó)新;;緬甸蟒蛇腹部表皮的摩擦機(jī)理研究[A];第六屆全國(guó)表面工程學(xué)術(shù)會(huì)議暨首屆青年表面工程學(xué)術(shù)論壇論文集[C];2006年
2 高中庸;黃位健;周光寶;;微凸體油膜彈性支承效應(yīng)的刨切實(shí)驗(yàn)驗(yàn)證[A];2007年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2007年
3 張占立;丁建寧;楊繼昌;胡友耀;解國(guó)新;;緬甸蟒蛇腹部表皮的摩擦機(jī)理研究[A];第六屆全國(guó)表面工程學(xué)術(shù)會(huì)議論文集[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 張志明;規(guī)則微凸體表面有向摩擦建模及應(yīng)用研究[D];華東理工大學(xué);2012年
2 胡兆穩(wěn);混合潤(rùn)滑狀態(tài)下塑性變形界面微凸體平坦化行為研究[D];合肥工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前4條
1 陳林博;混凝土開(kāi)裂面的力學(xué)行為分析[D];華南理工大學(xué);2015年
2 楊蕊;細(xì)觀尺度下切削鈦合金刀具接觸過(guò)程的研究[D];天津理工大學(xué);2015年
3 牛成超;端面扭動(dòng)統(tǒng)計(jì)摩擦模型研究[D];中國(guó)礦業(yè)大學(xué);2016年
4 王愛(ài)彬;粗糙表面接觸界面微凸體壓平效應(yīng)研究[D];合肥工業(yè)大學(xué);2013年
,本文編號(hào):2472540
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2472540.html