機械加工制造過程能耗優(yōu)化方法研究
[Abstract]:Manufacturing consumes a lot of energy in the process of transforming resources into products or services. As the main production process of manufacturing industry, machine tool is an important energy-consuming resource in the process of machining and manufacturing. In order to deal with global warming and improve the sustainability of manufacturing development, it is of great significance to optimize the energy consumption of mechanical manufacturing process for mechanical parts to save energy and realize low carbon manufacturing. In this paper, an integrated process planning and production scheduling method for optimization of energy consumption in machining manufacturing process is proposed. The modeling and quantitative evaluation of machine tool equipment resource state and the quantitative calculation of energy consumption in machining manufacturing process are emphatically studied, and the energy consumption of machining manufacturing process is optimized by means of integrated process planning and production scheduling. Integration of process planning and production scheduling for low carbon manufacturing. In view of the modeling and quantitative evaluation of machine tool equipment resource state, the difference between resource capability and state is discussed, and the formalized modeling description of machine tool equipment state is given, and then the quantitative evaluation index system of machine tool equipment state is established. Combined with the established machine tool state model and evaluation index system, the quantitative analysis of machine tool equipment state is realized by using the two-stage fuzzy comprehensive evaluation method based on analytic hierarchy process (AHP), and the total evaluation score of machine tool equipment state is obtained. Thus supporting process planning resource decision-making. Aiming at the problem of quantitative calculation of energy consumption in machining and manufacturing process, the energy consumption model of mechanical parts in machining process is established by means of reasonable assumption and dynamic element-based energy consumption model of machine tool. Aiming at the integration of process planning and production scheduling for low carbon manufacturing, this paper studies the integration model of process planning and production scheduling based on nonlinear process planning. Firstly, the characteristics of nonlinear process planning are analyzed. Combined with the theory of AOS tree, the process of establishing AOS tree to express it and how to obtain the optional process route of parts based on AOS tree of nonlinear process planning are introduced. Then, referring to the existing research on flexible job shop scheduling, through reasonable assumptions, the optimization objectives of selecting the comprehensive average state of machine tool, the total completion time and the energy consumption of machining manufacturing process with all machining tasks are established. The integrated model of process planning and production scheduling for low carbon manufacturing is presented, and its mathematical expression is given. The integration method of process planning and production scheduling based on intelligent algorithm is adopted. The integration model is solved by using the genetic algorithm of chromosome hierarchical coding. When the optional process plan generated for each part is timed by nonlinear process planning, the integrated model can weigh the optimization objective and decide the process route, machine tool selection scheme and corresponding production scheduling scheme suitable for each part. In order to verify the energy saving effect of the optimization method of energy consumption in machining manufacturing process, a case study was carried out. Based on the background of a manufacturing enterprise, the effectiveness of the proposed energy-saving method is verified by comparing the energy consumption of a batch of mechanical parts under the integration mode of process planning and production scheduling and the traditional serial working mode. The feasibility of integration of process planning and production scheduling based on chromosome hierarchical coding genetic algorithm is verified by benchmark examples. Finally, the main research contents and innovation points are summarized, and the future research direction is prospected and discussed.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:TH186
【參考文獻】
相關(guān)期刊論文 前10條
1 李聰波;李鵬宇;劉飛;崔龍國;稅虹;;面向高效低碳的機械加工工藝路線多目標優(yōu)化模型[J];機械工程學報;2014年17期
2 趙燕偉;張立萍;張景玲;王萬良;王海燕;;加工裝配式流水車間節(jié)能調(diào)度建模與優(yōu)化[J];中國機械工程;2014年16期
3 王進峰;范孝良;張超煒;萬書亭;;一種基于圖的求解工藝規(guī)劃和調(diào)度集成問題的蟻群優(yōu)化算法(英文)[J];Chinese Journal of Chemical Engineering;2014年07期
4 楊海東;鄭慶仁;劉國勝;郭建華;;基于差分遺傳算法的置換流水車間低碳調(diào)度模型[J];中南大學學報(自然科學版);2013年11期
5 劉飛;王秋蓮;劉高君;;機械加工系統(tǒng)能量效率研究的內(nèi)容體系及發(fā)展趨勢[J];機械工程學報;2013年19期
6 劉飛;王秋蓮;;機械制造系統(tǒng)能效評價的特點、研究現(xiàn)狀及發(fā)展趨勢[J];中國機械工程;2013年11期
7 楊勝富;孫衛(wèi)紅;魯文超;;復雜零件網(wǎng)絡化制造的生產(chǎn)加工狀態(tài)模型研究[J];機床與液壓;2013年07期
8 王秋蓮;劉飛;;數(shù)控機床多源能量流的系統(tǒng)數(shù)學模型[J];機械工程學報;2013年07期
9 劉飛;劉霜;;機床服役過程機電主傳動系統(tǒng)的時段能量模型[J];機械工程學報;2012年21期
10 冀阿強;段曉峰;;面向云制造的制造資源模型研究[J];中國制造業(yè)信息化;2012年17期
相關(guān)博士學位論文 前9條
1 賈順;面向低碳制造的機械加工工藝過程能量需求建模與智能計算研究[D];浙江大學;2014年
2 呂景祥;面向低碳制造的數(shù)控機床能量供給建模研究[D];浙江大學;2014年
3 何正為;離散制造車間生產(chǎn)現(xiàn)場建模及駕駛控制技術(shù)的研究[D];浙江大學;2013年
4 劉偉;智能CAPP系統(tǒng)中工藝路線和切削參數(shù)的決策研究[D];天津大學;2010年
5 李新宇;工藝規(guī)劃與車間調(diào)度集成問題的求解方法研究[D];華中科技大學;2009年
6 鞠全勇;智能制造系統(tǒng)生產(chǎn)計劃與車間調(diào)度的研究[D];南京航空航天大學;2007年
7 何彥;面向綠色制造的機械加工系統(tǒng)任務優(yōu)化調(diào)度方法研究[D];重慶大學;2007年
8 曹華軍;面向綠色制造的工藝規(guī)劃技術(shù)研究[D];重慶大學;2004年
9 秦寶榮;智能CAPP系統(tǒng)的關(guān)鍵技術(shù)研究[D];南京航空航天大學;2003年
相關(guān)碩士學位論文 前5條
1 胡祥萍;云制造環(huán)境下基于語義的制造資源建模與管理研究[D];北京交通大學;2013年
2 周寅鵬;離散型車間制造過程狀態(tài)監(jiān)控管理系統(tǒng)研究[D];武漢理工大學;2013年
3 蔡杰;面向產(chǎn)品族的工藝與設(shè)備分配方案聯(lián)合優(yōu)化方法[D];浙江大學;2013年
4 趙亮;基于本體的型號產(chǎn)品制造資源建模[D];哈爾濱工業(yè)大學;2009年
5 肖士利;數(shù)控機床狀態(tài)數(shù)據(jù)實時采集與監(jiān)視系統(tǒng)的研究開發(fā)[D];南京航空航天大學;2008年
,本文編號:2468117
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2468117.html