基于磷蝦群算法的SVR滾動(dòng)軸承性能衰退預(yù)測(cè)研究
[Abstract]:As one of the key parts in large rotating machinery, rolling bearing plays an important role in ensuring the normal operation of machinery and equipment. Therefore, it is very important to carry out predictive maintenance in advance. The feature extraction of vibration signal has a direct impact on the trend of decline and prediction accuracy. How to establish the correct evaluation index of bearing degradation is related to the accuracy of prediction results. It is very important to take the corresponding measures before the rolling bearing failure to avoid the accident. Based on the existing vibration signal feature extraction methods of rolling bearings, a new feature extraction method based on CEEMD and wavelet packet semi-soft threshold is proposed in this paper, which is different from the traditional time domain, frequency domain and time-frequency domain. On the basis of ensuring the integrity of the original signal, the noise in the high frequency vibration signal is filtered, and compared with other time-frequency methods, the effectiveness of the method is verified by experiments. In view of the improved feature extraction method proposed above, this paper deals with the dimensionality reduction of the high Vitert collection on the basis of obtaining several feature parameters, and puts forward the method of combining LLE with fuzzy C-means in view of the shortcomings of PCA,KPCA. After LLE clustering and fuzzy C-means quadratic clustering, the clustering effect of bearing inner ring with different degrees of decline is compared by experiments. Aiming at the problem of low prediction accuracy of traditional support vector regression machine, a multivariable support vector regression method based on krill swarm algorithm is proposed. The feeding principle of krill colony is adopted, and the optimal parameter Con in support vector regression machine is selected. The genetic algorithm and the krill swarm algorithm are tested to predict the decline trend of rolling bearing inner ring accurately. Finally, using the data of the rolling bearing life test at the University of Cincinnati, the vibration signals of the rolling bearing are extracted by the method in this paper, and the different decline process of the inner ring of the rolling bearing is divided into stages. The whole life cycle degradation trend of rolling bearings is predicted by three groups of different input features to be predicted. It is proved that this method has high prediction accuracy and more comprehensive information, which is of great significance to the research of rolling bearing performance decline prediction.
【學(xué)位授予單位】:哈爾濱理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH133.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 潘鋒;張敏華;;考慮氣象因素SVR算法的短期電力負(fù)荷預(yù)測(cè)[J];供用電;2008年01期
2 丁衛(wèi);王建全;;基于SVR回歸的電力系統(tǒng)暫態(tài)穩(wěn)定隱式梯形算法的改進(jìn)[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期
3 胡良謀;曹克強(qiáng);王文棟;徐浩軍;董新民;;基于SVR的非線(xiàn)性系統(tǒng)故障診斷研究[J];機(jī)械科學(xué)與技術(shù);2010年02期
4 王玲;付冬梅;穆志純;;遺傳優(yōu)化的SVR在鋼材力學(xué)性能預(yù)報(bào)中的應(yīng)用[J];系統(tǒng)仿真學(xué)報(bào);2009年04期
5 陳榮;梁昌勇;謝福偉;;基于SVR的非線(xiàn)性時(shí)間序列預(yù)測(cè)方法應(yīng)用綜述[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
6 蔡從中;王桂蓮;裴軍芳;朱星鍵;;瀝青生產(chǎn)過(guò)程中軟化點(diǎn)的SVR預(yù)測(cè)[J];重慶大學(xué)學(xué)報(bào);2011年09期
7 王文超;苗奪謙;陳驥遠(yuǎn);;基于SVR算法的燃?xì)廨啓C(jī)功率預(yù)測(cè)研究[J];計(jì)算機(jī)科學(xué);2013年S1期
8 胡小平;崔海蓉;朱麗華;王新燕;;基于SVR的隱含風(fēng)險(xiǎn)中性概率密度函數(shù)提取(英文)[J];Journal of Southeast University(English Edition);2010年03期
9 榮健;申金娥;鐘曉春;;基于小波和SVR的紅外弱小目標(biāo)檢測(cè)方法[J];西南交通大學(xué)學(xué)報(bào);2008年05期
10 夏國(guó)恩;金煒東;張葛祥;;改進(jìn)SVR及其在鐵路客運(yùn)量預(yù)測(cè)中的應(yīng)用[J];西南交通大學(xué)學(xué)報(bào);2007年04期
相關(guān)博士學(xué)位論文 前2條
1 劉小雍;基于SVR的非機(jī)理模型建模研究及故障預(yù)測(cè)[D];華中科技大學(xué);2015年
2 周曉劍;基于SVR的元建模及其在穩(wěn)健參數(shù)設(shè)計(jì)中的應(yīng)用[D];南京理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前8條
1 焦宏超;基于SVR的旋轉(zhuǎn)機(jī)械耦合故障診斷方法研究[D];華北電力大學(xué);2016年
2 許迪;基于磷蝦群算法的SVR滾動(dòng)軸承性能衰退預(yù)測(cè)研究[D];哈爾濱理工大學(xué);2017年
3 葉立強(qiáng);基于SVR的滾動(dòng)軸承剩余使用壽命預(yù)測(cè)方法研究[D];哈爾濱理工大學(xué);2017年
4 錢(qián)吉夫;SVR季節(jié)性時(shí)間序列預(yù)測(cè)模型的構(gòu)建與應(yīng)用[D];華南理工大學(xué);2010年
5 譚艷峰;基于SVR的話(huà)務(wù)量預(yù)測(cè)模型研究[D];新疆大學(xué);2010年
6 譚慶雙;基于SVR的混凝土/水泥的配合比對(duì)其抗壓強(qiáng)度影響規(guī)律的研究[D];重慶大學(xué);2014年
7 周曉劍;拉斯噪聲和均勻噪聲下SVR的魯棒性研究[D];江南大學(xué);2008年
8 劉幫;多核SVR在污水處理出水指標(biāo)建模中的應(yīng)用研究[D];湖南工業(yè)大學(xué);2015年
,本文編號(hào):2350803
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2350803.html