離心壓縮機(jī)葉片變性層對再制造的影響及去除研究
[Abstract]:In the West-to-East Gas Transmission Project, the condition of the surface layer of the centrifugal compressor impeller in the pipeline has changed after a period of service, which is completely different from the original state, forming a denatured layer, which affects the performance of the compressor. Because it is difficult to replace the impeller size directly, it will cause great waste of resources, so it is usually remanufactured. However, the existence of denatured layer will have a certain impact on the process of remanufacturing. Therefore, it is necessary to reveal the causes and rules of the influence of the denatured layer on the remanufacturing process and the improvement and removal methods of the surface denatured layer for the subsequent remanufacturing process. In this paper, different thickness denaturation layers were prepared by simulating the blade working environment in a high temperature and high pressure reactor. The effects of different denaturation layers on subsequent remanufacturing and the mechanism and process of improving the removal of the denatured layer by arc spot plasma technology were studied. The microstructure changes of the coatings were analyzed by means of metallographic analysis, SEM EDS, microhardness analysis and so on, and the mechanical properties of the coatings were analyzed by means of microhardness analysis, and the surface denatured layer was improved and cleaned by arc spot plasma equipment. The voltage and current signals during arc spot plasma treatment are derived and analyzed by oscilloscope, and the surface morphology of the treated samples is analyzed by means of SEMN 3D profilometer, etc. The mechanism of removal of denatured layer by arc spot plasma and the causes of some phenomena in the experiment are discussed. The experimental results show that with the increase of reaction time, the denatured layer is gradually thickened and finally divided into two layers, and the effect on the remanufacturing is more and more obvious. The sample of denatured layer prepared after 120 hours of heat preservation is welded by plasma spray welding. There are a large number of sulphide inclusions in the bonding section of the coating, and the size is in the hole of 0.5-1.5mm and the narrow surface of the welding pipe is dark. After the stress of the blade is simulated by ansys, the stress concentration will be greater in these parts. Fatigue cracks are likely to occur under the high cycle cyclic stress of the blade. The results of EDS spot scanning show that the sulfides on the surface have been basically removed and the purpose of the experiment has been achieved. The energy needed for sulphide evaporation in the range of arc spot is calculated by using the Bowen-Hubble cycle, which is much smaller than that put into arc spot by arc spot, and the energy of arc spot is enough to vaporize the surface sulfide. When the sample surface was treated for 120 h, the voltage increased slightly at the last stage of treatment, which corresponds to the delamination of the vulcanization film. The electron escape power of the inner Cr sulfide is larger than that of the Fe sulfide on the surface. By comparing this voltage signal with the voltage signal obtained by processing oxide, it is found that the voltage of sulfide treatment is about 2 V, which is due to the fact that the oxide belongs to n-type semiconductor and has lower electron escape power. The increase of circuit current will lead to the increase of the number of arcs and the speed of processing. However, the increase of current does not lead to an increase in the current density of the arc spot, and will not have a significant effect on the surface morphology of the treated samples. The different thickness of the denatured layer will affect the morphology of the treated surface, and the greater the thickness, the greater the roughness of the treated surface.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH452
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 佟樹善;丁彰雄;;等離子噴焊工藝對焊層沖淡率的影響[J];武漢水運工程學(xué)院學(xué)報;1985年02期
2 高安林;;等離子噴焊層沖擊韌性試驗[J];機(jī)械工程師;1985年03期
3 岳明達(dá);等離子噴焊層的切削[J];中國修船;1996年06期
4 韋靜,李家黎;21—4N材質(zhì)氣門等離子噴焊及加工工藝的探討[J];內(nèi)燃機(jī)配件;1986年01期
5 佟樹善;丁彰雄;;等離子噴焊層的形成機(jī)理及其特征區(qū)域[J];武漢水運工程學(xué)院學(xué)報;1985年04期
6 ;等離子噴焊、噴涂的安全防護(hù)[J];北京電力技術(shù);1977年02期
7 鄧鍵;等離子噴焊用高鉻鑄鐵粉末[J];機(jī)械工程材料;1985年01期
8 陳克選,赫曉龍,李春旭;等離子噴焊單片機(jī)控制系統(tǒng)研究[J];蘭州理工大學(xué)學(xué)報;2004年02期
9 蔣惠祖;等離子噴焊電氣控制系統(tǒng)的可編程設(shè)計[J];機(jī)床電器;1998年03期
10 于清利,張國強(qiáng),周福臣;馬氏體鋼氣門等離子噴焊工藝試驗[J];內(nèi)燃機(jī)配件;1994年01期
相關(guān)會議論文 前4條
1 尹瑜玲;詹祖保;吳子健;;大型柴油機(jī)閥桿與閥座的等離子噴焊工藝[A];第九次全國焊接會議論文集(第1冊)[C];1999年
2 李京龍;白鋼;李振民;;脈動等離子噴焊技術(shù)[A];第十次全國焊接會議論文集(第2冊)[C];2001年
3 盧順;陳健;詹捷;曹宇芳;孫智富;;模具表面等離子噴焊CoWC50合金強(qiáng)化研究[A];2007高技術(shù)新材料產(chǎn)業(yè)發(fā)展研討會暨《材料導(dǎo)報》編委會年會論文集[C];2007年
4 童向陽;;DF4內(nèi)燃機(jī)車柴油機(jī)氣門等離子噴焊[A];第十一次全國焊接會議論文集(第1冊)[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 王懷志;鋁青銅減摩粉體涂層及摩擦磨損性能[D];蘭州理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 顧鳳麟;SiC,,WC對鈷基合金等離子噴焊層組織和性能的影響[D];安徽工業(yè)大學(xué);2014年
2 陳豐君;離心壓縮機(jī)葉片變性層對再制造的影響及去除研究[D];合肥工業(yè)大學(xué);2015年
3 杜永鵬;自動等離子噴焊控制系統(tǒng)研究[D];蘭州理工大學(xué);2008年
4 黃詩銘;模具表面缺陷等離子噴焊修復(fù)研究[D];吉林大學(xué);2012年
5 馬保榮;銅合金粉末粒度對等離子噴焊層組織和性能的影響[D];蘭州理工大學(xué);2010年
6 蔣濤;氣門錐面等離子噴焊鈷基系列合金強(qiáng)化層的性能研究[D];廣東工業(yè)大學(xué);2006年
7 王書光;數(shù)字式等離子噴焊電源的研究與設(shè)計[D];山東科技大學(xué);2007年
8 張明華;基于VB自動等離子噴焊控制系統(tǒng)研究[D];蘭州理工大學(xué);2005年
9 赫曉龍;微機(jī)控制等離子噴焊系統(tǒng)研究[D];蘭州理工大學(xué);2004年
10 李國全;Fe對鋁青銅粉末等離子噴焊層組織及硬度的影響[D];蘭州理工大學(xué);2010年
本文編號:2186147
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2186147.html