旋轉(zhuǎn)系統(tǒng)斷軸故障在線預測及診斷方法的研究
[Abstract]:With the development of society and the progress of science and technology, more and more automatic rotating systems are applied. However, its failure reduces the application efficiency of automation equipment, especially the failure of rotating shaft will further expand the fault degree of the equipment. Rotating machinery system is the most commonly used transmission system, widely used in various fields, such as chemical industry, electricity, petroleum, aerospace and so on. Rotating machinery shaft failure will bring huge economic losses, even human casualties. Therefore, it is very important for production safety, personal safety, reducing economic loss and improving the national economy to strengthen the monitoring of the running state of rotating machinery system, especially the prediction of shaft fracture. Although there are many ways to detect shaft failures, such as offline and online. However, these methods have their own defects, which makes it difficult to judge the running state of the shaft. For our country, the research technology of shaft breaking prediction in rotating machinery is not mature. Although there are many papers on shaft breaking, it is generally limited to the quantitative theoretical analysis of shaft breaking. However, there are very few researches that can be applied to the field test of broken shaft. So far, there is a lack of a practical, simple and effective on-line prediction system to deal with the fracture of rotating shaft. This paper aims at the deficiency of the existing on-line testing methods of broken shaft, based on the fact that the mechanical shaft is an elastic body, and the strain produced in the process of torque transfer is related to the torsional stiffness. In this paper, a new on-line prediction method for shaft failure of rotating machinery is presented, and the preliminary research and test of the whole system are completed. This paper first introduces the fault situation of rotating machinery and the harm of broken shaft fault, analyzes and compares the existing methods and shortcomings of shaft broken fault detection, and synthesizes the demand and development of broken shaft fault prediction. Secondly, the changes of stiffness and dynamics in the running state of the shaft are analyzed from the angle of axial stress mechanism, and the feasibility of the new on-line prediction method is expounded, and the principle of the new on-line prediction system for broken shaft is analyzed. The structure of the whole prediction system is designed, and then the whole on-line system is developed. Finally, the real time detection of the broken shaft fault of the actual system is carried out, which proves the effectiveness of the method proposed in this paper.
【學位授予單位】:杭州電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TH17
【參考文獻】
相關(guān)期刊論文 前10條
1 吳德會;劉志天;王曉紅;蘇令鋅;;利用復合激勵的無盲點管道裂紋漏磁檢測新方法[J];儀器儀表學報;2016年10期
2 張冬;張春元;王剛;崔永森;;一種電力測功機中測控儀的設(shè)計[J];機電技術(shù);2015年05期
3 朱正;王春亮;;傳輸裝置轉(zhuǎn)子轉(zhuǎn)軸斷裂原因分析[J];理化檢驗(物理分冊);2015年01期
4 蘇建成;;汽車故障診斷專家系統(tǒng)技術(shù)研究[J];汽車零部件;2014年01期
5 田穎;金振華;聶圣芳;盧青春;;交流電力測功機控制系統(tǒng)的研究[J];汽車工程;2014年01期
6 鄭何程;馮建;盧繼平;;表面裂紋熒光磁粉檢測分析[J];科技傳播;2013年23期
7 羅躍綱;吳斌;胡紅英;馮長建;;旋轉(zhuǎn)機械轉(zhuǎn)軸裂紋損傷故障研究進展[J];大連民族學院學報;2013年01期
8 宿希強;;追問豐田“斷軸門”真相[J];中國質(zhì)量萬里行;2012年11期
9 任淮輝;陶剛正;張海濤;王習術(shù);;NTK300型風電機組主軸疲勞斷裂失效分析[J];工程與試驗;2012年03期
10 王炳成;任朝暉;聞邦椿;;基于非線性多參數(shù)的旋轉(zhuǎn)機械故障診斷方法[J];機械工程學報;2012年05期
相關(guān)博士學位論文 前1條
1 王廣斌;基于流形學習的旋轉(zhuǎn)機械故障診斷方法研究[D];中南大學;2010年
相關(guān)碩士學位論文 前7條
1 范爽;電渦流測功機加載控制系統(tǒng)的研制[D];北京理工大學;2016年
2 喻桑桑;基于VAM的微小裂紋超聲檢測研究[D];中國計量學院;2015年
3 沈紫樂;轉(zhuǎn)子不對中故障識別技術(shù)研究[D];鄭州大學;2012年
4 王輝;光電式動態(tài)扭矩測量系統(tǒng)的設(shè)計與實驗[D];燕山大學;2010年
5 劉磊;交流電力測功機控制器的研究與開發(fā)[D];北京交通大學;2010年
6 韓敬宇;基于聲發(fā)射技術(shù)的風電葉片裂紋無線監(jiān)測系統(tǒng)研究[D];北京化工大學;2010年
7 周文;微動疲勞裂紋萌生特性及壽命預測[D];浙江工業(yè)大學;2007年
,本文編號:2163676
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2163676.html