天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 機(jī)電工程論文 >

四自由度載人高逼真運(yùn)動(dòng)模擬平臺(tái)的研究

發(fā)布時(shí)間:2018-08-01 18:07
【摘要】:運(yùn)動(dòng)模擬平臺(tái)是一種用于模擬飛行器及其他交通工具中駕駛?cè)藛T動(dòng)態(tài)感受的地面模擬仿真設(shè)備,能夠讓模擬平臺(tái)上的駕乘人員感受到真實(shí)飛行過(guò)程中相近的瞬時(shí)過(guò)載及姿態(tài)變化。但傳統(tǒng)的六自由度并聯(lián)運(yùn)動(dòng)模擬平臺(tái)及其經(jīng)典洗出算法難以實(shí)現(xiàn)對(duì)真實(shí)瞬時(shí)過(guò)載及姿態(tài)變化的高逼真度模擬。因此基于實(shí)現(xiàn)高逼真度動(dòng)態(tài)模擬的目標(biāo),完成了新型運(yùn)動(dòng)模擬平臺(tái)機(jī)械結(jié)構(gòu)的設(shè)計(jì)工作,并對(duì)高逼真動(dòng)態(tài)模擬算法及運(yùn)動(dòng)模擬平臺(tái)控制系統(tǒng)等一系列問(wèn)題展開了研究。提出了一種四自由度串聯(lián)機(jī)構(gòu)形式的運(yùn)動(dòng)模擬平臺(tái)設(shè)計(jì)方案;谠O(shè)計(jì)技術(shù)協(xié)議參數(shù),利用Solidworks,Adams,Workbench,ANSYS等軟件完成了運(yùn)動(dòng)模擬平臺(tái)的機(jī)械結(jié)構(gòu)設(shè)計(jì)及優(yōu)化、動(dòng)力學(xué)仿真分析及電機(jī)力矩校核、有限元仿真分析及靜強(qiáng)度校核、剛?cè)狁詈蟿?dòng)力學(xué)仿真分析及動(dòng)強(qiáng)度校核,在追求模擬平臺(tái)輕量化的同時(shí),保證了關(guān)鍵部件的動(dòng)態(tài)強(qiáng)度。動(dòng)態(tài)模擬算法對(duì)運(yùn)動(dòng)模擬平臺(tái)模擬逼真度擁有決定性的影響;谌梭w前庭器官數(shù)學(xué)模型,建立了動(dòng)態(tài)模擬算法逼真度的客觀評(píng)價(jià)體系,為調(diào)整濾波器參數(shù)提供了依據(jù)。對(duì)動(dòng)態(tài)模擬算法中各個(gè)環(huán)節(jié)的組成進(jìn)行了具體分析,選擇并優(yōu)化了各環(huán)節(jié)傳遞函數(shù)形式及濾波器參數(shù)?紤]到固定參數(shù)的動(dòng)態(tài)模擬算法對(duì)動(dòng)態(tài)細(xì)節(jié)信息描述不準(zhǔn)確等缺點(diǎn),基于模糊控制理論設(shè)計(jì)了能夠根據(jù)輸入信號(hào)頻率實(shí)時(shí)調(diào)節(jié)動(dòng)態(tài)模擬算法濾波器參數(shù)的新型模糊動(dòng)態(tài)模擬算法。以STM32微控制器為核心,設(shè)計(jì)了豐富的外圍硬件電路。并根據(jù)控制要求,設(shè)計(jì)了控制系統(tǒng)軟件部分,實(shí)現(xiàn)了電機(jī)位置控制功能,優(yōu)化了電機(jī)加減速曲線,結(jié)合串口通信完成了上位機(jī)通過(guò)串口對(duì)運(yùn)動(dòng)模擬平臺(tái)各軸電機(jī)的運(yùn)動(dòng)控制功能。利用卡爾曼濾波對(duì)MPU6050的原始姿態(tài)數(shù)據(jù)進(jìn)行了融合數(shù)據(jù)處理,得到了動(dòng)態(tài)精度較高、噪聲干擾小的運(yùn)動(dòng)模擬平臺(tái)實(shí)時(shí)運(yùn)動(dòng)姿態(tài)數(shù)據(jù),為實(shí)現(xiàn)控制算法性能的閉環(huán)評(píng)估奠定了基礎(chǔ)。搭建了運(yùn)動(dòng)模擬平臺(tái)物理樣機(jī),制作了控制系統(tǒng)PCB板實(shí)物。以汽車駕駛為例,分別使用了經(jīng)典洗出算法和新型模糊動(dòng)態(tài)模擬算法在不同的路況下進(jìn)行了直線加減速、彎道加減速、綜合路況等測(cè)試。通過(guò)與真實(shí)汽車駕駛運(yùn)動(dòng)數(shù)據(jù)進(jìn)行對(duì)比,結(jié)果表明提出的新型模糊動(dòng)態(tài)模擬算法相比經(jīng)典洗出算法對(duì)動(dòng)態(tài)細(xì)節(jié)信號(hào)描述更加準(zhǔn)確,輸出運(yùn)動(dòng)的幅值差與相位差更小,實(shí)現(xiàn)了更高逼真度的動(dòng)態(tài)模擬。
[Abstract]:The motion simulation platform is a ground simulation equipment used to simulate the dynamic feelings of drivers in aircraft and other vehicles. Drivers on the simulation platform can feel the similar instantaneous overload and attitude change during the real flight. However, the traditional parallel motion simulation platform with six degrees of freedom and its classical washing out algorithm are difficult to achieve high fidelity simulation of real instantaneous overload and attitude change. Therefore, based on the goal of realizing high fidelity dynamic simulation, the design of the mechanical structure of a new motion simulation platform is completed, and a series of problems such as high-fidelity dynamic simulation algorithm and motion simulation platform control system are studied. A motion simulation platform with four degrees of freedom in series is proposed. Based on the parameters of the design protocol, the mechanical structure design and optimization of motion simulation platform, dynamic simulation analysis, motor torque check, finite element simulation analysis and static strength check are completed by using SolidworksAdamsn Workbench ANSYS and other softwares. The dynamic simulation analysis and dynamic strength checking of rigid-flexible coupling ensure the dynamic strength of key components while pursuing the lightweight of the simulation platform. Dynamic simulation algorithm has a decisive effect on simulation fidelity of motion simulation platform. Based on the mathematical model of human vestibular organ, an objective evaluation system of the fidelity of the dynamic simulation algorithm is established, which provides the basis for adjusting the filter parameters. The composition of each link in the dynamic simulation algorithm is analyzed in detail, and the form of transfer function and filter parameters are selected and optimized. Considering the shortcomings of dynamic simulation algorithm with fixed parameters, such as inaccurate description of dynamic detail information, Based on the fuzzy control theory, a new fuzzy dynamic simulation algorithm is designed, which can adjust the filter parameters of the dynamic simulation algorithm in real time according to the frequency of the input signal. With STM32 microcontroller as the core, a rich peripheral hardware circuit is designed. According to the control requirements, the software part of the control system is designed, the motor position control function is realized, and the acceleration and deceleration curve of the motor is optimized. Combined with serial communication, the motion control function of each axis motor of the motion simulation platform is completed by the host computer through the serial port. Using Kalman filter to process the original attitude data of MPU6050, the real-time motion attitude data of motion simulation platform with higher dynamic precision and less noise interference are obtained, which lays a foundation for closed-loop evaluation of control algorithm performance. The physical prototype of the motion simulation platform is built and the PCB board of the control system is made. Taking automobile driving as an example, the classical washing out algorithm and the new fuzzy dynamic simulation algorithm are used to test the linear acceleration and deceleration, the curve acceleration and deceleration, and the comprehensive road condition under different road conditions. By comparing with the real driving motion data, the results show that the new fuzzy dynamic simulation algorithm is more accurate than the classical washing out algorithm in describing the dynamic detail signal, and the amplitude difference and phase difference of the output motion are smaller. A higher fidelity dynamic simulation is realized.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH122

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 高艷輝;肖前貴;胡壽松;宋曉龍;;飛行模擬器發(fā)展中的關(guān)鍵技術(shù)[J];計(jì)算機(jī)測(cè)量與控制;2014年02期

2 王勇;劉暉;;飛行模擬器體感模擬的仿真研究[J];信息技術(shù);2012年05期

3 張玲;陳寧;姬云;朱江;;飛行模擬器飛行仿真系統(tǒng)集成方法研究[J];飛行力學(xué);2010年03期

4 劉廣達(dá);黃其濤;韓俊偉;;研究用飛行模擬器點(diǎn)對(duì)點(diǎn)采集系統(tǒng)[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2010年02期

5 王小亮;李立;張衛(wèi)華;;列車駕駛模擬器模糊自適應(yīng)洗出算法研究[J];鐵道學(xué)報(bào);2010年02期

6 蔚彪;劉紅軍;;飛行模擬訓(xùn)練經(jīng)濟(jì)性研究[J];長(zhǎng)春理工大學(xué)學(xué)報(bào)(高教版);2009年04期

7 魏中許;;民航飛行人力資本投資失衡問(wèn)題分析[J];交通企業(yè)管理;2009年01期

8 葉正茂;張輝;張晉;韓俊偉;;飛行模擬器的洗出算法研究[J];機(jī)床與液壓;2006年06期

9 何其昌,范秀敏,陳聰,馬登哲;交互式自行車模擬器系統(tǒng)關(guān)鍵技術(shù)[J];上海交通大學(xué)學(xué)報(bào);2005年09期

10 吳博,吳盛林,董彥良,袁立鵬;水陸坦克運(yùn)動(dòng)模擬洗出濾波算法設(shè)計(jì)[J];南京理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年02期

相關(guān)重要報(bào)紙文章 前1條

1 唐賢平;盛利;;高性能載人離心機(jī)逼真模擬多種戰(zhàn)機(jī)飛行[N];科技日?qǐng)?bào);2015年

相關(guān)博士學(xué)位論文 前6條

1 高健;飛行模擬器動(dòng)感模擬系統(tǒng)逼真度研究[D];哈爾濱工業(yè)大學(xué);2013年

2 黎建軍;免Z軸旋轉(zhuǎn)洗出的6-RSPS模擬器平臺(tái)若干關(guān)鍵技術(shù)研究[D];浙江大學(xué);2013年

3 楊宇;飛行模擬器動(dòng)感模擬關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2010年

4 欒志博;飛行模擬器數(shù)字飛行控制系統(tǒng)建模與輔助訓(xùn)練的實(shí)現(xiàn)研究[D];哈爾濱工業(yè)大學(xué);2010年

5 王小亮;高速列車駕駛仿真器動(dòng)感模擬系統(tǒng)研究[D];西南交通大學(xué);2009年

6 王輝;飛行模擬器操縱負(fù)荷系統(tǒng)關(guān)鍵技術(shù)及原理樣機(jī)研制[D];天津大學(xué);2007年

相關(guān)碩士學(xué)位論文 前9條

1 湯文;二自由度飛行姿態(tài)模擬器控制系統(tǒng)設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2015年

2 王申;動(dòng)感飛行游戲中的運(yùn)動(dòng)平滑處理技術(shù)與虛擬飛行仿真技術(shù)的研究[D];電子科技大學(xué);2015年

3 師曉芳;Stewart平臺(tái)車輛模擬器洗出算法研究[D];北京理工大學(xué);2015年

4 肖慧瓊;六自由度平臺(tái)體感算法研究[D];北京交通大學(xué);2014年

5 劉燁磊;新型飛行模擬器體感模擬與控制算法研究[D];北京交通大學(xué);2014年

6 霍電輝;新型三自由度動(dòng)感模擬平臺(tái)的研發(fā)[D];太原科技大學(xué);2013年

7 趙陽(yáng);船舶姿態(tài)測(cè)量與運(yùn)動(dòng)模擬[D];大連海事大學(xué);2011年

8 樊軍;訓(xùn)練型飛行模擬器系統(tǒng)設(shè)計(jì)及仿真研究[D];西北工業(yè)大學(xué);2007年

9 陳志雄;列車駕駛模擬器體感模擬的仿真研究[D];西南交通大學(xué);2006年

,

本文編號(hào):2158407

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/2158407.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶82466***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com