徑向流及圓環(huán)流磁流變閥結(jié)構(gòu)設(shè)計與壓降性能分析
發(fā)布時間:2018-06-30 00:03
本文選題:磁流變閥 + 徑向流; 參考:《華東交通大學(xué)》2015年碩士論文
【摘要】:傳統(tǒng)的液壓控制閥一般由可移動的閥芯機械部件及固定不動的閥體部件之間的相對運動來實現(xiàn)對液壓系統(tǒng)的壓力和流量控制。由于閥體內(nèi)存在可移動的機械部件,導(dǎo)致液壓閥的結(jié)構(gòu)復(fù)雜,,零部件的加工精度要求較高,而且還存在移動部件運動不易控制,工作可靠性低等難題。自從磁流變液智能流體材料的出現(xiàn),以其為工作介質(zhì)的磁流變控制閥有效的解決了這些不足。 磁流變閥是一種無相對移動部件,以智能流體磁流變液的流變特性為控制原理設(shè)計的智能器件。傳統(tǒng)的磁流變閥閥芯和閥體之間的阻尼通道為圓環(huán)流動結(jié)構(gòu),本文提出了一種新型的徑向流磁流變閥結(jié)構(gòu);同時在工作間隙和磁場特性相同的情況下,分析比較兩種不同流動走向的磁流變閥的性能。 本文主要內(nèi)容包括: 1、設(shè)計了一種徑向流磁流變閥,闡述了在設(shè)計過程中的一些關(guān)鍵技術(shù)和關(guān)鍵問題,按照設(shè)計要求初步選定了磁流變閥的關(guān)鍵尺寸,然后對其進行磁路計算,對所設(shè)計閥的關(guān)鍵尺寸進行校核,確定所需的線圈匝數(shù)。同時,在保證磁場條件不變的情況下,設(shè)計了一種線圈匝數(shù)和阻尼間隙大小都相同的圓環(huán)流磁流變閥結(jié)構(gòu),并進行了磁路計算及相關(guān)分析,驗證其結(jié)構(gòu)可行性。 2、分析了徑向流及圓環(huán)流兩種典型磁流變閥的壓降特性,建立了兩種不同流向的磁流變閥壓降數(shù)學(xué)模型,并進行了壓降推導(dǎo)計算分析。 3、利用ANSYS有限元分析軟件中的EMAG模塊,分別對徑向流和圓環(huán)流磁流變閥磁路進行仿真分析。通過仿真中結(jié)構(gòu)的磁力線分布,首先確定結(jié)構(gòu)的可行性,然后對比兩種結(jié)構(gòu)在電磁場仿真下的壓降大小,比較不同阻尼間隙走向的壓降性能。 4、采用Fluent流體仿真軟件分析徑向流及圓環(huán)流磁流變閥的壓降及速度變化規(guī)律,并與電磁場仿真的壓降性能進行對比分析,進一步解釋了流道結(jié)構(gòu)對磁流變閥壓降的影響。 5、采用LabVIEW測試軟件搭建了磁流變閥動態(tài)性能實驗系統(tǒng),對徑向流和圓環(huán)流磁流變閥的壓降特性進行了測試分析。分析了不同負載和不同激勵電流下兩種磁流變閥壓降的變化規(guī)律,并與電磁場仿真和磁流體仿真結(jié)果進行了對比分析。
[Abstract]:The traditional hydraulic control valve usually realizes the pressure and flow control of the hydraulic system by the relative motion between the movable spool mechanical parts and the fixed valve body parts. Because there are movable mechanical parts in the valve body, the structure of the hydraulic valve is complicated, the machining precision of the parts is high, and the movement of the moving parts is difficult to control and the working reliability is low. Since the emergence of the magnetorheological fluid intelligent fluid material, the magnetorheological control valve with the magnetorheological fluid as the working medium has effectively solved these shortcomings. Magnetorheological valve (MRV) is a kind of intelligent device which has no relative moving parts and is designed based on the control principle of the rheological characteristics of the intelligent fluid magnetorheological fluid. The damping passage between the valve core and the valve body of the traditional MRF valve is a circular flow structure. In this paper, a new type of radial flow MRF valve structure is proposed, and at the same time, when the working gap and magnetic field characteristics are the same, The performances of two kinds of magnetorheological valves with different flow patterns were analyzed and compared. The main contents of this paper are as follows: 1. A radial flow magnetorheological valve is designed. Some key technologies and key problems in the design process are described. The key dimensions of the MRV are preliminarily selected according to the design requirements. Then the magnetic circuit is calculated and the key dimensions of the designed valve are checked to determine the number of coils. At the same time, under the condition that the magnetic field condition is invariant, a structure of circular circulation magnetorheological valve with the same coil turns and damping gap is designed, and the magnetic circuit calculation and correlation analysis are carried out. 2. The pressure drop characteristics of two typical magnetorheological valves, radial flow and annular flow, are analyzed, and two mathematical models of MRV pressure drop with different flow directions are established. The pressure drop is calculated and analyzed. 3. Using the EMAG module of ANSYS finite element analysis software, the magnetic circuit of radial flow and annular flow magnetorheological valve is simulated and analyzed respectively. Through the distribution of the magnetic force line of the structure in the simulation, the feasibility of the structure is first determined, and then the pressure drop of the two structures under the electromagnetic field simulation is compared. The pressure drop performance of different damping gap trends is compared. 4. The pressure drop and velocity variation of radial flow and ring flow magnetorheological valve are analyzed by fluent fluid simulation software, and compared with the pressure drop performance of electromagnetic field simulation. The influence of flow channel structure on the pressure drop of MRV valve is further explained. 5. The dynamic performance experimental system of MRV valve is built by LabVIEW software. The pressure drop characteristics of MRV valve with radial flow and annular flow are tested and analyzed. The variation law of pressure drop of two kinds of MRV under different loads and different excitation currents is analyzed and compared with the results of electromagnetic field simulation and magnetofluid simulation.
【學(xué)位授予單位】:華東交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH137.52
【參考文獻】
相關(guān)期刊論文 前10條
1 李興;廖昌榮;駱靜;簡曉春;;多級徑向流動模式磁流變液減振器磁路設(shè)計[J];磁性材料及器件;2010年02期
2 司鵠,彭向和;磁流變流體的磁流變效應(yīng)[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2003年05期
3 李松晶,王廣懷;新型磁流變流體溢流閥的研究[J];功能材料;2001年03期
4 王代華;艾紅霞;;一種高效磁流變閥及其特性測試[J];功能材料;2006年07期
5 趙丹俠;廖昌榮;劉瓊;韓亮;李興;;磁流變液減振器的磁路設(shè)計方法研究[J];功能材料與器件學(xué)報;2012年02期
6 張琳;李彥希;;磁流變閥控缸系統(tǒng)的位置控制研究[J];機床與液壓;2007年12期
7 王京濤;吳張永;岑順鋒;王曉波;;磁流變技術(shù)在液壓傳動與控制中的應(yīng)用展望[J];機床與液壓;2011年10期
8 張琳;李彥希;;磁流變伺服閥的設(shè)計與動態(tài)特性研究[J];機械設(shè)計與制造;2007年06期
9 王京濤;吳張永;王曉波;岑順鋒;;基于ANSYS的磁流變閥磁場分析[J];機械設(shè)計與制造;2011年07期
10 劉丹丹;趙燦;湯春瑞;;基于磁流變閥的采煤機恒功率控制應(yīng)用[J];煤炭學(xué)報;2009年07期
本文編號:2083950
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2083950.html
最近更新
教材專著