天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機電工程論文 >

齒輪傳動系統(tǒng)若干動力學(xué)問題研究

發(fā)布時間:2018-06-18 19:56

  本文選題:行波共振 + 集總參數(shù)法 ; 參考:《東北大學(xué)》2015年博士論文


【摘要】:齒輪傳動系統(tǒng)是機械中最常用的傳動形式之一,由于其恒功率傳動的特點,具有其它傳動形式不可替代的優(yōu)勢。目前,齒輪系統(tǒng)正朝著高速、重載、輕型、高精度和自動化方向發(fā)展,這就對其動態(tài)性能提出了更高的要求。齒輪系統(tǒng)動力學(xué)、減振和降噪及其優(yōu)化已成為當(dāng)前科技界研究的非;钴S的前沿課題之一。汽車變速器、風(fēng)機增速箱及附件機匣等均是以它們的內(nèi)部齒輪傳動系統(tǒng)為主要結(jié)構(gòu)的動力轉(zhuǎn)換和傳遞機構(gòu),由于其功能和應(yīng)用背景的需要存在的減振降噪,重載下的均載和沖擊強度及結(jié)構(gòu)優(yōu)化等動力學(xué)問題均是齒輪傳動系統(tǒng)的典型共性問題,本文的研究就是以某型汽車變速器、某發(fā)動機附件機匣及1.5MW風(fēng)機增速箱行星傳動系統(tǒng)為對象,綜合運用機械振動、有限元理論和分析方法、多體動力學(xué)方法、智能優(yōu)化算法、集中參數(shù)方法、邊界元噪聲分析方法、模態(tài)綜合法等,對變速器、機匣傳動系統(tǒng)、風(fēng)機增速箱行星輪系統(tǒng)的直齒和斜齒輪耦合傳動系統(tǒng)的動力學(xué)特性、內(nèi)部激勵、修形減振優(yōu)化、振動噪聲和動態(tài)沖擊強度及結(jié)構(gòu)優(yōu)化等問題進行了深入研究,該研究對了解齒輪系統(tǒng)的結(jié)構(gòu)型式、幾何參數(shù)及加工方法等對齒輪傳動系統(tǒng)動態(tài)性能的影響具有一定價值,從而指導(dǎo)高質(zhì)量齒輪系統(tǒng)的設(shè)計和制造,同時對齒輪傳動系統(tǒng)的減振及噪聲控制提供了有力的理論基礎(chǔ)。具體而言,本文完成的工作如下:(1)研究了高速多載荷的彈性支撐錐齒輪軸系的動力學(xué)特性和行波共振特性;建立的軸系動力學(xué)模型考慮了多個齒輪副嚙合的耦合作用及軸承彈性支撐,分析了不同支撐剛度下的臨界轉(zhuǎn)速分布和共振響應(yīng)點的分布,利用應(yīng)變能密度分布法分析了不同行波共振振形對錐齒輪軸系的危害程度。(2)基于靜態(tài)接觸方法,獲得時變嚙合剛度,并結(jié)齒面誤差和嚙合沖擊激勵合成了齒輪嚙合激勵;提出利用彈性齒輪-軸-軸承的剛-柔耦合動力學(xué)模型和基于顯式動力學(xué)的動態(tài)接觸方法對斜齒輪軸系內(nèi)部嚙合激勵進行研究,對比分析齒輪副中心距變化和彈性齒輪-軸-軸承對內(nèi)部嚙合激勵的影響,彈性齒輪-軸-軸承導(dǎo)致嚙合激勵的頻率成分增加,且頻率成分在嚙合頻率及其倍頻、分頻和轉(zhuǎn)頻周圍成梳狀分布的結(jié)論與試驗結(jié)論一致。(3)提出基于顯式動力學(xué)和多體動力學(xué)方法及遺傳算法的直齒和斜齒輪優(yōu)化修形方法。利用多體動力學(xué)方法獲取齒輪副軸系由于齒輪-軸-軸承變形引起的齒輪副嚙合誤差,考慮齒輪副嚙合誤差,建立齒輪副修形有限元模型,并利用顯式動力學(xué)方法求解,以齒面最大應(yīng)力為判別依據(jù),利用遺傳算對修形參數(shù)進行優(yōu)化。此修形方法更加符合工程實際,修形參數(shù)取值能夠明顯降低實際工況下的齒面應(yīng)力。(4)以斜齒行星齒輪傳動系統(tǒng)為研究對象,建立了斜齒行星齒輪傳動系統(tǒng)全自由度集總參數(shù)動力學(xué)模型?紤]安裝誤差、加工誤差和時變嚙合剛度等因素,對風(fēng)機增速箱行星輪系進行了動力學(xué)特性研究。研究表明,在工作轉(zhuǎn)速下太陽輪和行星輪處于混動運動狀態(tài),振動頻率存在嚙合頻率和差頻,由于安裝誤差導(dǎo)致的星輪系不平衡載荷影響太陽輪軸心軌跡成不規(guī)則橢圓形,振動位移指標(biāo)明顯增大。對故障增速箱的測試信號進行時域和頻域分析,并將故障信息與增速箱固有特性進行對比分析,確定了故障原因和故障位置。(5)提出結(jié)合顯式動力學(xué)方法和邊界元方法進行變速器噪聲分析。利用彈性齒輪-軸-軸承動力學(xué)模型獲取變速器殼體動態(tài)軸承激勵,用于變速器殼體的噪聲分析。首先分別建立變速器輸入、輸出、差速器軸系動力學(xué)模型,對軸承激勵進行模擬仿真,將仿真獲得的軸承動態(tài)激勵施加在變速器殼體的軸承支撐部位,分析各軸承激勵綜合作用下變速器殼體在不同頻率下的表面振速;建立變速器殼體邊界元模型,通過噪聲分析獲得變速器表面和聲場范圍內(nèi)的噪聲分布及主要分布位置。此方法在獲取變速器殼體軸承激振力中考慮了彈性軸、齒輪、軸承的綜合影響,軸承激振力更加合理,噪聲分析精度更高。(6)將Matlb與Ansys的APDL語言相結(jié)合,建立加力泵齒輪軸系半?yún)?shù)化模型,對瞬間高速沖擊的極端工況下附件機匣加力泵齒輪軸動態(tài)強度和結(jié)構(gòu)優(yōu)化進行了研究,并開發(fā)了齒輪軸系動態(tài)強度及優(yōu)化分析軟件。分別利用隱式和顯式動力學(xué)求解方法對加力泵齒輪軸在高速沖擊載荷下的應(yīng)力進行仿真分析,分析結(jié)果表明,兩種方法獲得的應(yīng)力水平分布基本一致,但是動態(tài)沖擊載荷下的動應(yīng)力水平遠(yuǎn)大于平衡應(yīng)力,顯式動力學(xué)求解方法獲得的動態(tài)沖擊應(yīng)力水平和最大應(yīng)力分布位置更加接近試驗結(jié)果。(7)利用模態(tài)綜合法建立了連續(xù)參數(shù)的齒輪軸轉(zhuǎn)子系統(tǒng)動力學(xué)微分方程,對柔性軸-彈性齒輪盤-彈性輪齒構(gòu)成的齒輪軸轉(zhuǎn)子系統(tǒng)的固有頻率和振形進行了分析求解,并對軸和齒輪盤的質(zhì)量、剛度對系統(tǒng)固有特性的影響進行了分析討論。
[Abstract]:Gear transmission system is one of the most commonly used transmission forms in machinery. Because of its characteristic of constant power transmission, it has the irreplaceable advantages of other transmission forms. At present, the gear system is developing towards high speed, heavy load, light, high precision and automatic direction, which puts forward higher requirements for its dynamic performance. Gear system dynamics, reduction. Vibration and noise reduction and its optimization have become one of the most active frontiers in the field of science and technology. Automobile transmission, fan speed increase box and accessory box are all power conversion and transmission mechanism with their internal gear transmission system as the main structure. The dynamic problems such as average load, impact strength and structure optimization are the typical common problems of gear transmission system. The research in this paper is based on a certain type of automobile transmission, an engine accessory box and the 1.5MW fan speed increase box planetary transmission system, and the mechanical vibration, the finite element theory and the analysis method, the multi-body dynamics square. Method, intelligent optimization algorithm, centralized parameter method, boundary element noise analysis method, modal synthesis method and so on, the dynamic characteristics, internal excitation, modification, vibration noise and dynamic impact strength and structure optimization of the transmission system of transmission, casing transmission, fan speed increase box planetary gear system and the coupling transmission system of helical gear and helical gear system. A thorough study is carried out. The study has a certain value on understanding the dynamic performance of gear transmission system, which is of certain value to understand the structural type, geometric parameters and machining methods of the gear system, thus guiding the design and manufacture of the high quality gear system, and providing a powerful theoretical basis for the vibration reduction and noise control of the gear transmission system. The work completed in this paper is as follows: (1) the dynamic characteristics and traveling wave resonance characteristics of the elastic braced bevel gear shafting with high speed and multiple loads are studied. The dynamic model of the shaft system is built to consider the coupling effect of multiple gear meshing and the elastic support of the bearing, and the critical speed distribution and resonance response under the different support stiffness are analyzed. The damage degree of different traveling wave resonance shapes to bevel gear shafting is analyzed by the strain energy density distribution method. (2) based on the static contact method, the time varying meshing stiffness is obtained, and the gear meshing excitation is synthesized by the tooth surface error and the meshing impact excitation, and the rigid flexible coupling dynamic model of the elastic gear shaft bearing is proposed. The dynamic contact method based on explicit dynamics is used to study the internal meshing excitation of the helical gear shafting. The change of the center distance of the gear and the effect of the elastic gear shaft bearing on the internal meshing excitation are compared and analyzed. The frequency component of the meshing excitation is increased by the elastic gear shaft bearing, and the frequency component is at the meshing frequency and frequency doubling and frequency division. The conclusion of the comb distribution around the frequency around the frequency is consistent with the experimental conclusion. (3) an optimization method of straight tooth and helical gear modification based on explicit dynamics and multibody dynamics method and genetic algorithm is proposed. The meshing error of gear pair caused by the gear axis bearing deformation is obtained by using the multi body dynamics method, and the gear pair engagement is considered. Error, set up the finite element model of gear pair repair, and use the explicit dynamic method to solve it, take the maximum stress of the tooth surface as the criterion, and optimize the modification parameters by genetic calculation. The modification method is more in line with the engineering practice. The modification parameters can obviously reduce the stress of the tooth surface under the actual working condition. (4) the helical planetary gear transmission As the research object, the total parameter dynamic model of the total freedom degree of the helical planetary gear transmission system is established. Considering the installation error, the machining error and the time varying meshing stiffness, the dynamic characteristics of the planetary gear train of the fan speed increase box are studied. The research shows that the sun wheel and the planetary wheel are in the mixed motion at the working speed. The vibration frequency has meshing frequency and difference frequency. Because of the unbalance load of the star wheel system caused by the installation error, the axis trajectory of the sun wheel is irregular ellipse, and the vibration displacement index is obviously increased. The time and frequency domain analysis of the test signal of the fault growth box is carried out, and the barrier information is compared with the inherent characteristics of the speed increase box. The cause and fault location of the fault are determined. (5) an explicit dynamic method and a boundary element method are proposed to analyze the transmission noise. The dynamic bearing excitation of the transmission shell is obtained by the elastic gear shaft bearing dynamic model, which is used for the noise analysis of the gearbox. First, the transmission input, output, differential axis movement are set up. The mechanical model is used to simulate the bearing excitation, and the bearing dynamic stimulation obtained by the simulation is applied to the bearing support part of the gearbox, and the velocity of the surface vibration of the transmission shell under different frequencies is analyzed. The boundary element model of the transmission shell is established, and the surface harmony of the transmission is obtained through the noise analysis. The noise distribution and the main distribution position in the field range. This method takes into account the comprehensive influence of the elastic axis, the gear and the bearing in obtaining the exciting force of the bearing of the transmission shell, and the exciting force of the bearing is more reasonable and the precision of the noise analysis is higher. (6) combining Matlb with the APDL language of Ansys, the semi parameterized model of the gear shaft system of the loading pump is set up for a moment. The dynamic strength and structural optimization of the gear shaft of the appendage pump are studied under the extreme conditions of high speed impact, and the dynamic strength and the optimization analysis software of the gear shaft system are developed. The stress of the gear shaft under the high speed impact load is simulated and analyzed by the implicit and explicit dynamic solving methods. The distribution of stress level obtained by the two methods is basically the same, but the dynamic stress level of the dynamic impact load is far greater than the equilibrium stress. The dynamic impact stress level and the maximum stress distribution position obtained by the explicit dynamic solution approach are closer to the test results. (7) the continuous parameters of the gear shaft rotor are established by using the modal synthesis method. The differential equation of system dynamics is analyzed and solved for the natural frequency and vibration shape of the gear shaft rotor system composed of flexible axles and elastic gear teeth. The influence of the mass and stiffness of the shaft and gear disk on the inherent characteristics of the system is analyzed and discussed.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TH132.41

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張婷;李育錫;王三民;;功率二分支齒輪傳動系統(tǒng)靜態(tài)均載特性研究[J];機械傳動;2012年03期

2 于東洋;張超;葉盛鑒;李威;鄭浩;;齒輪傳動系統(tǒng)溫度預(yù)測方法研究[J];機械傳動;2013年06期

3 徐毓嫻;白立芬;于水;李慶祥;;齒輪傳動系統(tǒng)精度測試[J];實驗技術(shù)與管理;1997年01期

4 周美立,齊從謙,吳天星;齒輪傳動系統(tǒng)的相似分析與設(shè)計[J];機械傳動;1997年02期

5 諸偉新;齒輪傳動系統(tǒng)的振動分析[J];河北職工大學(xué)學(xué)報;2000年01期

6 陸一平,查建中,Tony C Woo;平行軸齒輪傳動系統(tǒng)布局設(shè)計的膨脹方法[J];機械工程學(xué)報;2001年12期

7 李潤方,韓西,林騰蛟,陶澤光;齒輪傳動系統(tǒng)結(jié)合部動力學(xué)參數(shù)識別[J];中國機械工程;2001年12期

8 潘宏俠,姚竹亭;齒輪傳動系統(tǒng)狀態(tài)檢測與故障診斷[J];華北工學(xué)院學(xué)報;2001年04期

9 孫智民,沈允文,王三民,李華;星型齒輪傳動系統(tǒng)的非線性動力學(xué)分析[J];西北工業(yè)大學(xué)學(xué)報;2002年02期

10 陳威,遲寶山;工程機械齒輪傳動系統(tǒng)噪聲分析與控制[J];現(xiàn)代制造工程;2004年01期

相關(guān)會議論文 前3條

1 王慶洋;曹登慶;;齒輪傳動系統(tǒng)的減振降噪研究[A];第九屆全國動力學(xué)與控制學(xué)術(shù)會議會議手冊[C];2012年

2 李朝峰;周世華;劉杰;聞邦椿;;考慮齒側(cè)間隙的齒輪傳動系統(tǒng)非線性動力學(xué)特性研究[A];第11屆全國轉(zhuǎn)子動力學(xué)學(xué)術(shù)討論會(ROTDYN2014)論文集(上冊)[C];2014年

3 王靜;李明;劉剛;;滾動軸承-錐齒輪傳動系統(tǒng)非線性動力學(xué)研究[A];中國力學(xué)大會——2013論文摘要集[C];2013年

相關(guān)博士學(xué)位論文 前10條

1 歐陽天成;高速膠印機齒輪傳動系統(tǒng)非線性動力學(xué)及彈流潤滑研究[D];東南大學(xué);2016年

2 魏莎;含區(qū)間不確定性參數(shù)的風(fēng)電齒輪傳動系統(tǒng)動力學(xué)特性研究[D];清華大學(xué);2015年

3 黃冠華;高速列車齒輪傳動系統(tǒng)動態(tài)特性研究[D];西南交通大學(xué);2015年

4 王靖岳;隨機擾動下齒輪傳動系統(tǒng)的非線性動力學(xué)與故障辨識研究[D];東北大學(xué);2015年

5 于印鑫;齒輪傳動系統(tǒng)若干動力學(xué)問題研究[D];東北大學(xué);2015年

6 鮑和云;兩級星型齒輪傳動系統(tǒng)分流特性及動力學(xué)研究[D];南京航空航天大學(xué);2006年

7 陳會濤;風(fēng)力發(fā)電機齒輪傳動系統(tǒng)隨機振動分析及動力可靠性概率優(yōu)化設(shè)計[D];重慶大學(xué);2012年

8 周雁冰;基于高階統(tǒng)計量的齒輪傳動系統(tǒng)故障特征提取方法研究[D];華北電力大學(xué);2013年

9 齊立群;空間齒輪傳動系統(tǒng)接觸動力學(xué)及相關(guān)問題研究[D];哈爾濱工業(yè)大學(xué);2012年

10 朱增寶;封閉差動人字齒輪傳動系統(tǒng)均載及動力學(xué)特性分析研究[D];南京航空航天大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 王兆龍;齒輪傳動系統(tǒng)的非光滑分岔行為研究[D];燕山大學(xué);2015年

2 李楓;高速動車組轉(zhuǎn)向架齒輪傳動系統(tǒng)的仿真分析與試驗研究[D];上海交通大學(xué);2015年

3 柴立發(fā);開溝作業(yè)機組組合傳動條統(tǒng)設(shè)計及機理分析[D];河北農(nóng)業(yè)大學(xué);2015年

4 張凱;直齒輪傳動系統(tǒng)彈性誤差運動模型及精度分析[D];大連理工大學(xué);2015年

5 姬娟;基于多參數(shù)仿真分析的二級齒輪傳動系統(tǒng)的動力學(xué)研究[D];蘭州交通大學(xué);2015年

6 陶朝林;齒輪傳動系統(tǒng)的動態(tài)特性及參數(shù)合理匹配研究[D];蘭州交通大學(xué);2015年

7 梁亦棟;仿形秸稈粉碎還田機設(shè)計研究[D];山東理工大學(xué);2015年

8 羅鑫鑫;軌道車車軸齒輪傳動系統(tǒng)動態(tài)特性研究與分析[D];湘潭大學(xué);2015年

9 宋茂華;乘坐式高速插秧機后橋機構(gòu)的研究與設(shè)計[D];山東理工大學(xué);2015年

10 王進進;齒輪傳動系統(tǒng)的非光滑振動特性及抑制研究[D];燕山大學(xué);2016年



本文編號:2036679

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/jixiegongchenglunwen/2036679.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6ac29***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com