一類含復(fù)合驅(qū)動及約束分支少自由度并聯(lián)機(jī)構(gòu)理論研究
發(fā)布時間:2018-06-16 04:17
本文選題:并聯(lián)機(jī)構(gòu) + 運(yùn)動學(xué); 參考:《燕山大學(xué)》2016年博士論文
【摘要】:少自由度并聯(lián)機(jī)構(gòu)具有相對較高的剛度、較少的驅(qū)動分支、較大的工作空間、較強(qiáng)的承載能力、結(jié)構(gòu)簡單和容易控制等優(yōu)點(diǎn)。與傳統(tǒng)的6自由度并聯(lián)機(jī)構(gòu)不同,少自由度并聯(lián)機(jī)構(gòu)中存在結(jié)構(gòu)上的約束,導(dǎo)致機(jī)構(gòu)分支中產(chǎn)生了約束力旋量,即約束力/力矩。為確定機(jī)構(gòu)的應(yīng)力、精度和選擇適合的執(zhí)行器,必須解出機(jī)構(gòu)中的驅(qū)動-約束力旋量。通過構(gòu)建復(fù)合驅(qū)動分支來減少驅(qū)動分支數(shù)量,合理布置分支和分配誤差,提高少自由度并聯(lián)機(jī)構(gòu)的運(yùn)動精度。剛度是并聯(lián)機(jī)構(gòu)重要的性能指標(biāo)之一,因此分析剛度和變形對揭示少自由度并聯(lián)機(jī)構(gòu)特性是非常重要的。文中為確定少自由度并聯(lián)機(jī)構(gòu)的約束力旋量的位置并進(jìn)一步分析靜力學(xué)問題,提出一種靜力學(xué)矢量分析方法?偨Y(jié)21種含有線性或轉(zhuǎn)動驅(qū)動器的驅(qū)動分支,通過靜力學(xué)矢量分析來確定施加在各分支上的約束力旋量的位置。對可調(diào)式少自由度并聯(lián)機(jī)構(gòu)驅(qū)動分支進(jìn)行設(shè)計,通過3種運(yùn)動副間的轉(zhuǎn)換實現(xiàn)少自由度并聯(lián)機(jī)構(gòu)樣式的變換。通過推導(dǎo)和使用6×6的Jacobian矩陣和靜力學(xué)方程求解驅(qū)動-約束力旋量。使用靜力學(xué)矢量分析法求解3自由度的3-RRPRR并聯(lián)機(jī)構(gòu)和4自由度的2-SPS+2-SPR并聯(lián)機(jī)構(gòu)的驅(qū)動-約束力旋量。提出一種運(yùn)用CAD變量幾何求解含有SPR驅(qū)動分支少自由度并聯(lián)機(jī)構(gòu)的驅(qū)動-約束力的方法。以含有SPR驅(qū)動分支的3-5自由度的3-SPR,2-SPS+2-SPR和4-SPS+SPR并聯(lián)機(jī)構(gòu)為例,首先構(gòu)建它們的運(yùn)動模擬機(jī)構(gòu),再進(jìn)一步構(gòu)建力學(xué)模擬機(jī)構(gòu),使用CAD變量幾何方法求解其驅(qū)動-約束力矩陣和驅(qū)動-約束力。從而驗證使用CAD變量幾何方法在求解含有SPR驅(qū)動分支的并聯(lián)機(jī)構(gòu)的驅(qū)動-約束力問題上的可行性。提出并構(gòu)建一種含有UPU復(fù)合驅(qū)動分支的3分支5自由度2-SPS+UPU并聯(lián)機(jī)構(gòu)和一種含有PUP復(fù)合驅(qū)動分支的3分支4自由度2-SPS+PUP并聯(lián)機(jī)構(gòu),系統(tǒng)地分析復(fù)合驅(qū)動分支對運(yùn)動學(xué)和靜力學(xué)的影響。通過構(gòu)建UPU和PUP復(fù)合驅(qū)動分支來提高少自由度并聯(lián)機(jī)構(gòu)的運(yùn)動精度?紤]約束力旋量推導(dǎo)66?Jacobian矩陣和6階66?Hessian矩陣,建立位移、速度、加速度模型并進(jìn)行了靜力學(xué)分析。對這兩種并聯(lián)機(jī)構(gòu)進(jìn)行運(yùn)動仿真分析,比較解析結(jié)果和運(yùn)動仿真結(jié)果。以驅(qū)動-約束力旋量為基礎(chǔ),求解3-SPS+UP和3-UPS+RRPR少自由度并聯(lián)機(jī)構(gòu)中驅(qū)動/約束分支的彈性變形,并推導(dǎo)驅(qū)動/約束分支的伴隨矩陣。以驅(qū)動/約束分支的6×6的Jacobian矩陣和伴隨矩陣為基礎(chǔ),求解這兩種并聯(lián)機(jī)構(gòu)的總剛度和彈性變形。建立兩種并聯(lián)機(jī)構(gòu)的有限元仿真模型,分析并比較機(jī)構(gòu)動平臺中心的彈性變形的解析結(jié)果與有限元仿真結(jié)果。分析約束力旋量對少自由度并聯(lián)機(jī)構(gòu)的剛度和彈性變形的影響。
[Abstract]:The small degree of freedom parallel mechanism has the advantages of relatively high stiffness, less driving branches, large workspace, strong bearing capacity, simple structure and easy control. Different from the traditional 6-DOF parallel mechanism, there are structural constraints in the low-degree-of-freedom parallel mechanism, which leads to the formation of binding force spinor, that is, the binding force / torque, in the branch of the mechanism. In order to determine the stress and precision of the mechanism and select a suitable actuator, the driving-binding spinor must be worked out. In order to reduce the number of driving branches, reasonably arrange the branches and allocate errors, the kinematic accuracy of the parallel mechanism with less degrees of freedom can be improved by constructing compound driving branches. Stiffness is one of the important performance indexes of parallel mechanism, so it is very important to analyze stiffness and deformation to reveal the characteristics of small degree of freedom parallel mechanism. In this paper, a static vector analysis method is proposed to determine the position of the binding spinor of a small degree of freedom parallel mechanism and to further analyze the statics problem. 21 kinds of driving branches with linear or rotational actuators are summarized, and the position of binding spinor applied on each branch is determined by static vector analysis. The driving branch of the adjustable parallel mechanism with less degrees of freedom is designed and the style of the mechanism is changed through the conversion of three kinds of kinematic pairs. A 6 脳 6 Jacobian matrix and statics equation are used to solve the drive-binding spinor. The driving-binding spinor of 3-RRPRR parallel mechanism with 3 degrees of freedom and 2-SPS 2-SPR parallel mechanism with 4 degrees of freedom is solved by static vector analysis. A method for solving the driving-binding force of a parallel mechanism with SPR driving branches with less degrees of freedom by using CAD variable geometry is proposed. Taking 3-SPR-2-SPS 2-SPR and 4-SPS SPR parallel mechanisms with 3-5 degrees of freedom as examples, their motion simulation mechanisms are first constructed, and then mechanical simulation mechanisms are further constructed. CAD variable geometry method is used to solve the driving-binding matrix and drive-binding matrix. The feasibility of using CAD variable geometry method to solve the driving-binding problem of parallel mechanism with SPR driving branch is verified. A 3-branch 5-DOF 2-SPS UPU parallel mechanism with UPU compound driving branch and a 3-branch 4-DOF 2-SPS PUP parallel mechanism with pup compound driving branch are proposed and constructed. The effects of compound driving branches on kinematics and statics are systematically analyzed. The kinematic accuracy of the parallel mechanism with less degrees of freedom is improved by constructing the UPU and PUP compound driving branches. In this paper, the displacement, velocity and acceleration models are established and statically analyzed considering the binding spinor derivation of the 66U Jacobian matrix and the 66th Hessian matrix of order 6. The kinematic simulation results of the two parallel mechanisms are compared and compared. Based on the driving-binding spinor, the elastic deformation of driving / constrained branches in 3-SPS up and 3-UPS RRPR parallel mechanisms with less degrees of freedom is solved, and the adjoint matrix of driving / constrained bifurcation is derived. Based on the Jacobian matrix and adjoint matrix of 6 脳 6 driving / constrained branches, the total stiffness and elastic deformation of these two parallel mechanisms are solved. The finite element simulation models of two parallel mechanisms are established, and the analytical results of elastic deformation of the center of the moving platform are analyzed and compared with the results of finite element simulation. The influence of the binding force on the stiffness and elastic deformation of a small degree of freedom parallel mechanism is analyzed.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TH112
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 馮李航;張為公;龔宗洋;林國余;梁大開;;Delta系列并聯(lián)機(jī)器人研究進(jìn)展與現(xiàn)狀[J];機(jī)器人;2014年03期
2 張帆;張丹;楊建國;;RRR-UPRR-RPUR球面轉(zhuǎn)動并聯(lián)機(jī)構(gòu)運(yùn)動學(xué)分析[J];農(nóng)業(yè)機(jī)械學(xué)報;2011年09期
3 胡波;路懿;;求解3-RPS并聯(lián)機(jī)構(gòu)剛度的新方法[J];機(jī)械工程學(xué)報;2010年01期
4 汪勁松,段廣洪,楊向東;虛擬軸機(jī)床的研究進(jìn)展──兼談在清華大學(xué)研制成功的VAMT1Y型原型樣機(jī)[J];科技導(dǎo)報;1998年10期
5 黃田,汪勁松,D.J.Whitehouse;Stewart并聯(lián)機(jī)器人位置空間解析[J];中國科學(xué)E輯:技術(shù)科學(xué);1998年02期
,本文編號:2025262
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2025262.html
最近更新
教材專著