油潤滑條件下減摩織構(gòu)表面的優(yōu)化設(shè)計(jì)
本文選題:表面織構(gòu) + 流體潤滑 ; 參考:《中國礦業(yè)大學(xué)》2015年博士論文
【摘要】:機(jī)械設(shè)備接觸表面間的摩擦問題直接影響設(shè)備的能量損耗、失效時間及可靠性,如何減小機(jī)械磨損,提高能量效率和延長失效時間是機(jī)械行業(yè)的重要研究課題。近年來,表面織構(gòu)作為一種表面處理技術(shù)在減摩抗磨領(lǐng)域顯現(xiàn)出了較大的優(yōu)勢。通過對零件接觸表面進(jìn)行表面織構(gòu)的優(yōu)化設(shè)計(jì),可以有效改善潤滑狀態(tài),減小摩擦磨損。為進(jìn)一步豐富表面織構(gòu)領(lǐng)域的科學(xué)研究,本文在傳統(tǒng)織構(gòu)研究的基礎(chǔ)上通過理論建模和試驗(yàn)研究方法研究了多織構(gòu)位置排布及各向異性織構(gòu)形貌的排布模式等因素對潤滑摩擦性能的影響,同時對具有復(fù)雜嵌套結(jié)構(gòu)的織構(gòu)表面的潤滑摩擦特性進(jìn)行了深入研究。首先,基于常見的球冠狀織構(gòu)單元建立了CFD流體動壓潤滑模型,利用高性能科學(xué)計(jì)算平臺計(jì)算得到了Navier-Stokes方程的數(shù)值解,詳細(xì)討論了織構(gòu)半徑、深度、面積率及相對滑動速度對摩擦系數(shù)和動壓承載能力的影響。結(jié)果發(fā)現(xiàn)摩擦系數(shù)與面積比和深度成反比,其中深度對摩擦系數(shù)的影響更大,而動壓承載能力則主要與織構(gòu)深度和相對滑動速度有關(guān),隨著深度的增加動壓承載能力逐漸增加,在無量綱深度達(dá)到15時承載能力達(dá)到最大。然后,利用數(shù)值仿真方法建立了基于多織構(gòu)單元相互作用的流體動壓潤滑模型,研究了圓柱形凹坑織構(gòu)單元的位置偏移率對摩擦學(xué)性能的影響,并采用正交設(shè)計(jì)方法研究了織構(gòu)單元的深度、半徑、位置偏移率及相對滑動速度對摩擦系數(shù)和動壓承載能力的影響。結(jié)果發(fā)現(xiàn)織構(gòu)單元位置偏移率對摩擦副表面間的動壓承載能力有十分顯著的影響,當(dāng)位置偏移率由0增加到0.5時,壓力系數(shù)的增幅達(dá)34.9倍,與此同時摩擦系數(shù)僅增加約0.59%。同時發(fā)現(xiàn),適當(dāng)增加圓柱狀織構(gòu)單元的面積可以在有效增加動壓承載能力的同時減小摩擦力。對于具有圓對稱結(jié)構(gòu)的圓柱狀凹坑,不需要考慮織構(gòu)單元的傾角因素,而對于像橢圓形織構(gòu)單元這種具有各向異性結(jié)構(gòu)特征的織構(gòu)而言,其傾角、位置偏移率及排布模式對摩擦學(xué)性能的協(xié)同影響則是織構(gòu)優(yōu)化設(shè)計(jì)必須要考慮的重要因素。正交設(shè)計(jì)的具有不同面積、傾角、位置偏移率及排布模式的橢圓織構(gòu)表面的CFD仿真結(jié)果發(fā)現(xiàn)增加橢圓織構(gòu)單元的面積能顯著降低織構(gòu)表面的摩擦系數(shù),而橢圓長軸與相對滑動方向一致時摩擦系數(shù)最小。織構(gòu)單元的傾角和位置偏移率對動壓承載能力的提升有顯著貢獻(xiàn)。摩擦磨損試驗(yàn)結(jié)果同樣發(fā)現(xiàn)橢圓柱狀織構(gòu)的傾角和位置偏移率對摩擦力有較大影響,而橢圓織構(gòu)的最佳單元間距為1500μm。低速輕載工況條件下,織構(gòu)傾角取0°減摩效果最好,而高速重載條件下取90°摩擦力最小。通過對三種不同織構(gòu)排布模式的對比研究發(fā)現(xiàn)P2排布模式的織構(gòu)表面具有更優(yōu)越的減摩性能。圓環(huán)狀織構(gòu)是一種具有復(fù)雜嵌套結(jié)構(gòu)的織構(gòu)單元,其環(huán)狀結(jié)構(gòu)兼具離散的凹坑織構(gòu)和連續(xù)的凹槽織構(gòu)的結(jié)構(gòu)特點(diǎn)。對單一織構(gòu)單元的數(shù)值仿真研究結(jié)果顯示,在相同面積比條件下圓環(huán)狀織構(gòu)的減摩性能優(yōu)于傳統(tǒng)的圓柱狀織構(gòu),并且隨著織構(gòu)單元面積比的增加摩擦系數(shù)逐漸減小,同時流線分析結(jié)果表明圓環(huán)狀織構(gòu)在吸納磨屑方面較圓柱狀織構(gòu)更有優(yōu)勢。為了驗(yàn)證理論結(jié)果的可靠性在可變載荷摩擦磨損試驗(yàn)機(jī)上測試了圓環(huán)狀織構(gòu)表面的摩擦力,試驗(yàn)結(jié)果發(fā)現(xiàn)圓環(huán)寬度對摩擦力有較大影響,寬度為200μm的圓環(huán)織構(gòu)具有最優(yōu)減摩效果,同時摩擦力隨著織構(gòu)單元的位置偏移率的增大而逐漸減小。圓環(huán)狀織構(gòu)表面的摩擦性能對織構(gòu)的設(shè)計(jì)參數(shù)較為敏感,不同織構(gòu)參數(shù)的織構(gòu)表面的摩擦力可以大于或小于相應(yīng)光滑表面。
[Abstract]:The friction between the contact surfaces of the mechanical equipment directly affects the energy loss, failure time and reliability. How to reduce the mechanical wear, improve the energy efficiency and prolong the failure time is an important research topic in the machinery industry. In recent years, the surface texture has shown great advantages in the field of antifriction and wear reduction as a surface texture technology. The optimal design of surface texture on the surface of the parts can effectively improve the lubrication state and reduce friction and wear. In order to further enrich the scientific research in the field of surface texture, the paper studied the position arrangement and anisotropic texture of multi texture on the basis of the theoretical modeling and Experimental Research on the basis of the traditional texture research. The influence of the layout mode of the appearance on the lubrication friction properties and the lubrication and friction characteristics of the texture surface with complex nested structure were studied. First, the CFD fluid dynamic lubrication model was established based on the common spherical coronal texture unit, and the Navier-Stokes equation was calculated by the high performance computing platform. The influence of the texture radius, depth, area rate and relative sliding velocity on the friction coefficient and the bearing capacity of the dynamic pressure is discussed in detail. The results show that the friction coefficient is inversely proportional to the area ratio and depth, and the depth has greater influence on the friction coefficient, while the dynamic loading capacity is mainly related to the texture depth and relative sliding velocity. The bearing capacity of dynamic pressure increases gradually, and the bearing capacity reaches the maximum when the dimensionless depth reaches 15. Then, the hydrodynamic lubrication model based on the interaction of multi texture elements is established by numerical simulation. The influence of the position deviation rate on the tribological properties of the cylindrical concave texture unit is studied and the orthogonal design is used. The influence of the depth, radius, position deviation and relative sliding velocity of the texture element on the friction coefficient and the bearing capacity of the dynamic pressure is studied by the design method. The results show that the position migration rate of the texture unit has a significant influence on the dynamic loading capacity of the friction pair. When the position migration rate increases from 0 to 0.5, the increase of the pressure coefficient is increased. At the same time, the friction coefficient is up to about 0.59%. at the same time, at the same time, the coefficient of friction is only about 0.59%.. It is found that the proper increase in the area of the cylindrical texture unit can reduce the friction force while increasing the dynamic loading capacity. For cylindrical concave with circular symmetry, it is not necessary to consider the inclination factor of the texture unit, but for the elliptical texture unit. In the case of texture with anisotropic structure, its inclination, position migration rate and the synergistic effect of the arrangement mode on the tribological properties are important factors to be considered in the optimization design of texture. The CFD simulation results of orthogonal design with different area, angle, position deviation and pattern type elliptical texture are found to be increased. The area of the elliptical texture unit can significantly reduce the friction coefficient of the texture surface, and the friction coefficient is the smallest when the elliptical long axis is the same as the relative sliding direction. The inclination and position offset of the texture unit have a significant contribution to the lifting capacity. The friction and wear test results also have the inclination and position deviation of the elliptical cylindrical texture. The rate has a great influence on the friction force, while the optimal unit spacing of the elliptical texture is 1500 m. low speed light load condition, and the texture dip angle is best with 0 degree reduction, while the friction force of 90 degrees is the smallest under the high speed heavy load condition. The texture surface of the P2 layout mode is superior by comparing the three different texture layout modes. The circular texture is a texture unit with complex nested structure, with a circular structure with a discrete concave texture and a continuous groove texture. Numerical simulation of a single texture unit shows that the friction reduction performance of circular circular texture is better than that of the traditional cylindrical fabric under the same area ratio condition. The friction coefficient gradually decreases with the increase of the area ratio of the texture element, and the flow line analysis shows that the circular texture is more advantageous than the cylindrical texture in absorbing the debris. In order to verify the reliability of the theoretical results, the friction force of the circular texture surface is tested on the variable load friction and wear testing machine. The test results are also tested. It is found that the ring width has a great influence on the friction force. The annular texture with a width of 200 m has the best antifriction effect. At the same time, the friction force gradually decreases with the increase of the position migration rate of the texture element. The friction properties of the circular texture surface are more sensitive to the design parameters of the texture. The frictional force on the texture surface with different texture parameters can be found. To be larger than or less than the corresponding smooth surface.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TH117
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉林林;李曙;劉陽;;高錸酸鉛寬溫度范圍內(nèi)的減摩行為[J];無機(jī)材料學(xué)報(bào);2010年11期
2 馬華農(nóng);;金屬塑料減摩材料[J];新技術(shù)新工藝;1983年05期
3 V.L.Lashkhi ,G.I.Shor ,I.A.Buyanovskii ,L.V.Borenko ,S.D.Likhterov ,周春紅;支配潤滑油減摩添加劑選擇的一些關(guān)系[J];固體潤滑;1990年03期
4 劉永青,盧頌峰,王良御;液晶添加劑的減摩特性研究[J];潤滑與密封;1991年02期
5 楊守禮;復(fù)合減摩材料機(jī)理及應(yīng)用的研究[J];河北理工學(xué)院學(xué)報(bào);1994年03期
6 張少豐;一種新型減摩復(fù)合劑的研制[J];合成潤滑材料;1994年02期
7 林宜超;節(jié)能減摩劑在工程機(jī)械上的應(yīng)用[J];工程機(jī)械;1996年01期
8 楊光;安達(dá)減摩劑[J];有色冶金節(jié)能;1997年05期
9 李銀發(fā);節(jié)能減摩劑及其對一些使用問題的看法[J];石油商技;1998年02期
10 郭亦明;;聚四氟乙烯型減摩劑減摩與抗磨效果的評定[J];公路交通科技;1985年03期
相關(guān)會議論文 前10條
1 羅新民;陳國需;董浚修;;一種硼型減摩劑的性能和作用機(jī)理研究[A];第五屆全國摩擦學(xué)學(xué)術(shù)會議論文集(下冊)[C];1992年
2 李靜;劉玉峰;;一種新型有機(jī)鉬減摩劑的性能研究[A];中國汽車工程學(xué)會燃料與潤滑油分會第13屆年會論文集[C];2008年
3 官文超;;水溶性高分子型減摩劑對鋼/鋼摩擦磨損行為的研究[A];第五屆全國摩擦學(xué)學(xué)術(shù)會議論文集(下冊)[C];1992年
4 李靜;姚文釗;;潤滑減摩材料及技術(shù)的研究現(xiàn)狀[A];中國汽車工程學(xué)會燃料與潤滑油分會第十二屆年會論文集[C];2006年
5 彭太江;伍曉宇;李積彬;王紅志;梁雄;;超聲波懸浮與減摩技術(shù)及應(yīng)用[A];2009海峽兩岸機(jī)械科技論壇論文集[C];2009年
6 彭太江;伍曉宇;李積彬;王紅志;梁雄;;超聲波懸浮與減摩技術(shù)及應(yīng)用[A];2009年廣東先進(jìn)制造技術(shù)(佛山)活動周文集[C];2009年
7 左光漢;夏蘭舫;焦明華;張煒德;桂長林;;改性環(huán)氧減摩復(fù)合材料的摩擦學(xué)特性研究[A];摩擦學(xué)第四屆全國學(xué)術(shù)交流會論文集(第三冊)[C];1987年
8 李詩卓;M.B.Peterson;S.F.Murray;;合金自生氧化膜高溫減摩行為的研究[A];第六屆全國摩擦學(xué)學(xué)術(shù)會議論文集(上冊)[C];1997年
9 陳大鵬;余波;;減摩節(jié)能劑摩擦系數(shù)測定方法的研究[A];第五屆全國摩擦學(xué)學(xué)術(shù)會議論文集(下冊)[C];1992年
10 史佩京;許一;徐濱士;Louise Drake;Bryan Draper;;納米減摩潤滑劑在發(fā)動機(jī)中的應(yīng)用效果研究[A];2006全國摩擦學(xué)學(xué)術(shù)會議論文集(二)[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 宋陽;機(jī)械減摩節(jié)能空間不小[N];中國經(jīng)濟(jì)導(dǎo)報(bào);2010年
相關(guān)博士學(xué)位論文 前3條
1 黃仁和;新型NanoG/BMI減摩復(fù)合材料的制備、結(jié)構(gòu)及性能研究[D];山東科技大學(xué);2006年
2 馬晨波;織構(gòu)化表面的潤滑計(jì)算模型及減摩特性研究[D];中國礦業(yè)大學(xué);2010年
3 王洪濤;油潤滑條件下減摩織構(gòu)表面的優(yōu)化設(shè)計(jì)[D];中國礦業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前4條
1 姜中艦;振動減摩器對連續(xù)管力學(xué)性能的影響研究[D];西南石油大學(xué);2013年
2 古忠濤;PPS基減摩復(fù)合材料的研究[D];西華大學(xué);2006年
3 崔國明;內(nèi)生顆粒增強(qiáng)Al-10Sn復(fù)合減摩材料的研究[D];廣西大學(xué);2006年
4 肖承豐;基于超聲減摩原理的新型低摩擦氣缸研制[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號:2020770
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2020770.html