氣動(dòng)調(diào)節(jié)閥的故障診斷及其粘滯故障補(bǔ)償
發(fā)布時(shí)間:2018-06-13 01:43
本文選題:氣動(dòng)調(diào)節(jié)閥 + 故障診斷; 參考:《華東理工大學(xué)》2015年碩士論文
【摘要】:氣動(dòng)調(diào)節(jié)閥是過(guò)程工業(yè)的控制回路中使用最為廣泛的一類執(zhí)行器件,它的完好運(yùn)行是回路良好控制性能的保證。然而隨著控制回路運(yùn)行時(shí)間的增長(zhǎng),閥門就會(huì)慢慢的出現(xiàn)各種故障。針對(duì)彈簧膜片式氣動(dòng)閥門故障的檢測(cè)和分類問(wèn)題,提出了一種基于累計(jì)殘差設(shè)置閾值的閥門故障檢測(cè)方法,在故障檢測(cè)后,提出利用粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的算法來(lái)實(shí)現(xiàn)故障的分類。利用所提方法在DAMADICS仿真平臺(tái)上對(duì)閥門故障情況和故障種類進(jìn)行了應(yīng)用研究,最后通過(guò)某工廠的實(shí)際閥門故障數(shù)據(jù)進(jìn)行驗(yàn)證。仿真分析和工廠實(shí)際數(shù)據(jù)的驗(yàn)證結(jié)果都表明該檢測(cè)算法能夠有效地檢測(cè)出閥門是否出現(xiàn)故障,優(yōu)化后的分類算法能達(dá)到較高的分類準(zhǔn)確率,較傳統(tǒng)的BP神經(jīng)網(wǎng)絡(luò)分類算法準(zhǔn)確率有提高。針對(duì)閥門的粘滯故障,本文提出了利用T-S型模糊控制器代替?zhèn)鹘y(tǒng)的PI控制器來(lái)消除閥門粘滯所引起的振蕩。該控制器利用閥門粘滯時(shí)被控對(duì)象的狀態(tài)信息與控制器輸出變化率之間的關(guān)系來(lái)構(gòu)建模糊控制的規(guī)則,通過(guò)對(duì)傳統(tǒng)PI控制器的積分系數(shù)進(jìn)行修正使得閥門快速移出粘滯區(qū),最終實(shí)現(xiàn)對(duì)粘滯的補(bǔ)償。將該算法應(yīng)用在實(shí)際的液位控制回路中,實(shí)驗(yàn)結(jié)果表明該控制器的補(bǔ)償效果明顯,且能夠適應(yīng)不同的設(shè)定值,具有一定的魯棒性。
[Abstract]:The pneumatic regulating valve is the most widely used kind of actuator in the control loop of the process industry. Its perfect operation is the guarantee of the good control performance of the loop. However, with the increase of the running time of the control loop, the valve will slowly appear all kinds of faults. A method of valve fault detection based on accumulative residual setting threshold is proposed. After the fault detection, the algorithm of particle swarm optimization (PSO) optimization BP neural network is proposed to classify the faults. The application of the proposed method to the valve failure and the type of fault on the DAMADICS simulation platform is carried out, and the actual valve of a factory is finally passed. The simulation analysis and the actual data of the factory verify that the detection algorithm can effectively detect the valve failure, and the optimized classification algorithm can achieve a higher classification accuracy. Compared with the traditional BP neural network classification algorithm, the accuracy rate is improved. In this paper, the valve malfunction is proposed in this paper. The T-S type fuzzy controller is used to replace the traditional PI controller to eliminate the oscillation caused by the valve viscosity. The controller uses the relationship between the state information of the controlled object and the output change rate of the controller to construct the rules of the fuzzy control by using the valve's viscosity. The valve is modified to make the valve through the correction of the integral coefficient of the traditional PI controller. The algorithm is applied to the actual liquid level control loop. The experimental results show that the compensation effect of the controller is obvious, and it can adapt to different set values and has a certain robustness.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH138.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 楊貴;李仁旺;顏忠仔;張鵬舉;;模糊數(shù)學(xué)在閥門故障診斷中的應(yīng)用[J];閥門;2007年05期
2 謝宏;何怡剛;彭敏放;張波;;離散Hopfield神經(jīng)網(wǎng)絡(luò)在混燒控制系統(tǒng)故障診斷中的應(yīng)用[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
3 時(shí)文剛,劉樹林,張嘉鐘,黃文虎;基于支持向量機(jī)的往復(fù)泵泵閥故障診斷方法[J];機(jī)械強(qiáng)度;2002年03期
4 楊海榮;薄翠梅;龔偉俊;張廣明;;基于PCA-SVM集成閥門故障診斷方法研究[J];流體機(jī)械;2009年07期
5 劉素一;劉晶t,
本文編號(hào):2012073
本文鏈接:http://sikaile.net/jixiegongchenglunwen/2012073.html
最近更新
教材專著