考慮區(qū)間和概率不確定性的機(jī)械結(jié)構(gòu)優(yōu)化設(shè)計(jì)
本文選題:機(jī)械結(jié)構(gòu) + 不確定性。 參考:《浙江大學(xué)》2017年碩士論文
【摘要】:實(shí)際工程中普遍存在著各種影響結(jié)構(gòu)性能的不確定因素,不確定性?xún)?yōu)化設(shè)計(jì)是處理這些不確定因素并獲取高性能、高穩(wěn)健可靠性結(jié)構(gòu)設(shè)計(jì)方案的有效途徑。雖然近年來(lái)國(guó)內(nèi)外不少專(zhuān)家學(xué)者圍繞機(jī)械結(jié)構(gòu)的不確定性?xún)?yōu)化設(shè)計(jì)開(kāi)展了一系列研究工作,但是仍然存在許多問(wèn)題有待進(jìn)一步研究。一方面,現(xiàn)有研究在求解基于區(qū)間的結(jié)構(gòu)優(yōu)化設(shè)計(jì)模型時(shí)往往是通過(guò)引入罰因子、正則化因子等將區(qū)間模型轉(zhuǎn)換為確定性模型,并通過(guò)加權(quán)法將多目標(biāo)優(yōu)化問(wèn)題轉(zhuǎn)化為單目標(biāo)問(wèn)題進(jìn)行優(yōu)化求解,該基于模型轉(zhuǎn)換的間接求解過(guò)程比較繁瑣,且不同的模型轉(zhuǎn)換參數(shù)還會(huì)導(dǎo)致不同的求解結(jié)果;另一方面,在實(shí)際工程結(jié)構(gòu)設(shè)計(jì)中概率和非概率不確定因素通常是同時(shí)存在的。因此,開(kāi)展考慮區(qū)間和概率不確定性的機(jī)械結(jié)構(gòu)優(yōu)化設(shè)計(jì)研究,提出并實(shí)現(xiàn)機(jī)械結(jié)構(gòu)優(yōu)化設(shè)計(jì)模型的直接求解方法,對(duì)提高機(jī)械結(jié)構(gòu)性能及其穩(wěn)健可靠性具有重要意義。論文的主要內(nèi)容如下:第一章綜述了概率不確定性?xún)?yōu)化設(shè)計(jì)、非概率不確定性?xún)?yōu)化設(shè)計(jì)和概率-非概率混合不確定性?xún)?yōu)化設(shè)計(jì)的國(guó)內(nèi)外研究現(xiàn)狀,分析了現(xiàn)有研究中存在的問(wèn)題,提出了論文的研究意義與研究?jī)?nèi)容。第二章概述了區(qū)間序關(guān)系與區(qū)間可能度等區(qū)間數(shù)學(xué)基礎(chǔ)理論,給出了基于區(qū)間模型、概率模型和混合模型的機(jī)械結(jié)構(gòu)穩(wěn)健性與可靠性指標(biāo)的數(shù)學(xué)描述方法,并介紹了預(yù)測(cè)機(jī)械結(jié)構(gòu)性能指標(biāo)的近似代理模型的構(gòu)建方法以及常用的多項(xiàng)式響應(yīng)面模型和Kriging近似模型。第三章采用區(qū)間數(shù)描述不確定因素,建立了基于區(qū)間的機(jī)械結(jié)構(gòu)穩(wěn)健性設(shè)計(jì)模型,提出了區(qū)間約束違反矢量的定義和基于區(qū)間約束違反矢量的優(yōu)于關(guān)系準(zhǔn)則,并結(jié)合雙層嵌套的遺傳算法和Kriging近似模型技術(shù),實(shí)現(xiàn)了基于區(qū)間的機(jī)械結(jié)構(gòu)穩(wěn)健性設(shè)計(jì)模型的直接求解。最后,通過(guò)測(cè)試算例和壓力機(jī)上橫梁穩(wěn)健設(shè)計(jì)實(shí)例驗(yàn)證了提出方法的有效性和相對(duì)于間接方法的優(yōu)越性。第四章建立了基于區(qū)間的機(jī)械結(jié)構(gòu)可靠性設(shè)計(jì)模型,給出了基于圖表法的區(qū)間可靠度統(tǒng)一計(jì)算公式,提出了區(qū)間可靠性違反度的定義和對(duì)應(yīng)的優(yōu)于關(guān)系準(zhǔn)則,完成了對(duì)可靠性設(shè)計(jì)模型的直接求解。測(cè)試算例和壓力機(jī)上橫梁可靠性設(shè)計(jì)實(shí)例表明,提出方法可獲得比間接方法更優(yōu)的結(jié)果。第五章以概率變量描述設(shè)計(jì)參數(shù),以區(qū)間變量描述不確定因素,建立了基于概率-區(qū)間的機(jī)械結(jié)構(gòu)可靠性設(shè)計(jì)模型,選擇在區(qū)間變量影響下可靠度的最小值作為可靠性指標(biāo),選擇多項(xiàng)式響應(yīng)面模型作為近似代理模型,并結(jié)合遺傳算法和改進(jìn)的一次二階矩法,實(shí)現(xiàn)了基于概率-區(qū)間的結(jié)構(gòu)可靠性設(shè)計(jì)模型的求解,并通過(guò)壓力機(jī)滑塊機(jī)構(gòu)和底座的可靠性設(shè)計(jì)實(shí)例驗(yàn)證了提出方法的有效性。第六章總結(jié)了論文的研究工作和主要成果,并指出了有待進(jìn)一步研究的方向。
[Abstract]:There are a variety of uncertain factors affecting structural performance in practical engineering. The uncertain optimization design is an effective way to deal with these uncertain factors and to obtain high performance and high robust reliability structural design scheme. Although many experts and scholars at home and abroad have carried out a series of research work on the uncertainty optimization design of mechanical structures in recent years, there are still many problems to be further studied. On the one hand, in solving the structural optimization design model based on interval, the existing research often transforms interval model into deterministic model by introducing penalty factor and regularization factor. The multi-objective optimization problem is transformed into a single-objective problem by weighted method. The indirect solving process based on model transformation is tedious, and different model conversion parameters will lead to different results. In practical engineering structure design, both probabilistic and non-probabilistic uncertainties usually exist at the same time. Therefore, it is of great significance to improve the performance and robust reliability of mechanical structure by carrying out the research on the optimal design of mechanical structure considering interval and probability uncertainty, and putting forward and realizing the direct solution method of the optimal design model of mechanical structure. The main contents of this paper are as follows: the first chapter summarizes the research status of probabilistic uncertainty optimization design, non-probabilistic uncertainty optimization design and probabilistic non-probabilistic mixed uncertainty optimization design at home and abroad. The existing problems are analyzed, and the significance and content of the thesis are put forward. In the second chapter, the basic theory of interval mathematics such as interval order relation and interval probability degree is summarized, and the mathematical description method of mechanical structure robustness and reliability index based on interval model, probability model and mixed model is given. The construction method of approximate agent model for predicting mechanical structure performance index and polynomial response surface model and Kriging approximate model are introduced. In chapter 3, the interval number is used to describe the uncertain factors, and the robust design model of mechanical structure based on interval is established. The definition of interval constraint violation vector and the superior relation criterion based on interval constraint violation vector are proposed. Combined with double-layer nested genetic algorithm and Kriging approximate model technology, the direct solution of the robust design model of mechanical structure based on interval is realized. Finally, the effectiveness of the proposed method and the superiority of the indirect method compared with the indirect method are verified by a test example and an example of the robust design of the cross beam on the press. In chapter 4, the reliability design model of mechanical structure based on interval is established, the unified calculation formula of interval reliability based on chart method is given, and the definition of interval reliability violation degree and the corresponding superior relation criterion are put forward. The direct solution of reliability design model is completed. The test example and the reliability design example of the cross beam on the press show that the proposed method can obtain better results than the indirect method. In chapter 5, the design parameters are described by probabilistic variables, and the uncertain factors are described by interval variables. The reliability design model of mechanical structures based on probabilistic and interval-interval is established. The minimum value of reliability under the influence of interval variables is chosen as the reliability index. The polynomial response surface model is chosen as the approximate agent model and the genetic algorithm and the improved first-order second-order moment method are combined to solve the probabilistic and interval-based structural reliability design model. The effectiveness of the proposed method is verified by an example of reliability design of the slider mechanism and the base of the press. The sixth chapter summarizes the research work and main results, and points out the direction of further research.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TH122
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王敏容;樊建平;陳旭勇;;基于區(qū)間模型的結(jié)構(gòu)非概率穩(wěn)健優(yōu)化設(shè)計(jì)[J];固體力學(xué)學(xué)報(bào);2014年06期
2 Jin CHENG;Gui-fang DUAN;Zhen-yu LIU;Xiao-gang LI;Yi-xiong FENG;Xiao-hai CHEN;;基于徑向基函數(shù)、區(qū)間分析和非支配排序遺傳算法的結(jié)構(gòu)區(qū)間多目標(biāo)優(yōu)化(英文)[J];Journal of Zhejiang University-Science A(Applied Physics & Engineering);2014年10期
3 孫文彩;楊自春;;基于模糊凸集的結(jié)構(gòu)非概率可靠性綜合模型[J];中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué);2014年09期
4 吳鈺龍;姜潮;;一種考慮模糊不確定性的概率-區(qū)間混合結(jié)構(gòu)可靠性分析方法[J];機(jī)械強(qiáng)度;2014年03期
5 杜永恩;王生楠;王照;;一種非概率疲勞可靠性分析方法[J];機(jī)械科學(xué)與技術(shù);2014年05期
6 姜潮;鄭靜;韓旭;張慶飛;;一種考慮相關(guān)性的概率--區(qū)間混合不確定模型及結(jié)構(gòu)可靠性分析[J];力學(xué)學(xué)報(bào);2014年04期
7 李小剛;程錦;劉振宇;吳震宇;;基于雙層更新Kriging模型的機(jī)械結(jié)構(gòu)動(dòng)態(tài)特性穩(wěn)健優(yōu)化設(shè)計(jì)[J];機(jī)械工程學(xué)報(bào);2014年03期
8 姜潮;劉麗新;龍湘云;;一種概率-區(qū)間混合結(jié)構(gòu)可靠性的高效計(jì)算方法[J];計(jì)算力學(xué)學(xué)報(bào);2013年05期
9 鄭嚴(yán);程文明;程躍;;隱式極限狀態(tài)方程結(jié)構(gòu)的混合可靠性分析[J];機(jī)械科學(xué)與技術(shù);2013年10期
10 姜潮;李文學(xué);王彬;周桂林;劉雨祥;;一種針對(duì)概率與非概率混合結(jié)構(gòu)可靠性的敏感性分析方法[J];中國(guó)機(jī)械工程;2013年19期
,本文編號(hào):1979871
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1979871.html