基于光固化成型的微結(jié)構(gòu)增材制造技術(shù)研究
本文選題:增材制造 + 光固化; 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:光固化增材制造技術(shù)成型速度快、精度高,其原理為通過(guò)特定波長(zhǎng)的光引發(fā)液態(tài)光敏樹(shù)脂特定區(qū)域發(fā)生交聯(lián)反應(yīng),完成相應(yīng)圖案的固化,通過(guò)層層堆疊實(shí)現(xiàn)三維結(jié)構(gòu)制造。根據(jù)光固化的成型方式,其精度影響因素主要有成型光路系統(tǒng)精度、控制精度和樹(shù)脂成型精度。所以研究提高光固化成型精度的措施已經(jīng)成為增材制造工程的熱點(diǎn)課題之一。現(xiàn)有研究主要集中于光路結(jié)構(gòu)對(duì)整體成型精度的影響。但是根據(jù)光固化成型原理,難以在大范圍成型時(shí)實(shí)現(xiàn)較高的成型精度。因此在較高成型精度下實(shí)現(xiàn)大尺寸模型的增材制造已經(jīng)成為當(dāng)下迫切需要解決的難題。本文采用理論分析、模擬仿真與實(shí)驗(yàn)研究相結(jié)合的方法,應(yīng)用光固化成型技術(shù),完成光路與控制系統(tǒng)的研制,并通過(guò)實(shí)驗(yàn)驗(yàn)證該系統(tǒng)能夠?qū)崿F(xiàn)15μm成型精度,10×15×15mm~3成型范圍的技術(shù)指標(biāo)要求,具體研究?jī)?nèi)容包括以下幾個(gè)方面:完成了高精度光路系統(tǒng)的研制,提出了在保證高精度成型條件下的拼接成型技術(shù),擴(kuò)大了成型范圍,明確了孔徑角等參數(shù)對(duì)成型精度的影響規(guī)律并通過(guò)Zemax軟件進(jìn)行仿真分析,結(jié)合針對(duì)于該系統(tǒng)的性能測(cè)試實(shí)驗(yàn),確定該成型光路系統(tǒng)滿足技術(shù)指標(biāo)要求;結(jié)合硬件結(jié)構(gòu)完成了控制系統(tǒng)的研制,實(shí)現(xiàn)了投影系統(tǒng)與位移系統(tǒng)的協(xié)同控制,并針對(duì)拼接成型方式完成了圖像的分割處理;研究不同像素點(diǎn)密度與能量擴(kuò)散之間的規(guī)律,通過(guò)灰度調(diào)控方式進(jìn)行圖片預(yù)處理,提高能量均勻性以實(shí)現(xiàn)高精度模型的制造。搭建了光固化成型檢測(cè)系統(tǒng),完成了成型過(guò)程中對(duì)模型進(jìn)行邊緣識(shí)別與檢測(cè),實(shí)現(xiàn)了對(duì)成型過(guò)程進(jìn)行實(shí)時(shí)監(jiān)測(cè),保證每一層的成型精度,提高成型質(zhì)量。完成了光固化增材制造實(shí)驗(yàn)臺(tái)的搭建,開(kāi)展了豎直方向成型精度實(shí)驗(yàn)研究,確定固化層厚與光照強(qiáng)度和光照時(shí)間的關(guān)系曲線;開(kāi)展了水平方向成型精度實(shí)驗(yàn)研究,確定其成型精度為±5.5μm。完成了拼接成型實(shí)驗(yàn)并對(duì)其中關(guān)鍵技術(shù)進(jìn)行了研究,拼接成型范圍大于10×15×15mm~3,滿足技術(shù)指標(biāo)要求,并實(shí)現(xiàn)了傳動(dòng)鏈免裝配一次成型關(guān)鍵技術(shù)研究。
[Abstract]:The technology of light curing material processing is rapid and accurate. The principle is that the cross linking reaction occurs through the specific region of liquid Guang Min resin at specific wavelength, the corresponding pattern is solidified, and the three dimensional structure is fabricated by stacking layers. According to the forming mode of light curing, the main factors affecting the precision are the precision of the shaping light path system, the control precision and the resin forming precision. Therefore, the research on the measures to improve the precision of light curing molding has become one of the hot topics in the material increasing engineering. The current research focuses on the influence of optical path structure on the overall forming accuracy. However, according to the principle of light curing, it is difficult to achieve high precision in large scale molding. Therefore, it has become an urgent problem to realize the material increasing manufacturing of large scale model under high forming precision. In this paper, the development of optical path and control system is completed by using the method of theoretical analysis, simulation and experimental research, and the application of light curing molding technology. The experimental results show that the system can meet the technical requirements of 15 渭 m forming precision 10 脳 15 脳 15mm~3. The specific research contents include the following aspects: the development of high precision optical circuit system has been completed. The splicing technology under the condition of high precision forming is put forward, the forming range is enlarged, the influence law of the parameters such as aperture angle on the forming precision is clarified, and the simulation analysis is carried out by Zemax software. Combined with the performance test experiment of the system, it is determined that the shaping optical path system meets the technical requirements, and the control system is developed in combination with the hardware structure, and the collaborative control between the projection system and the displacement system is realized. The image segmentation is completed for the splicing mode, the law between the different pixel density and the energy diffusion is studied, and the image preprocessing is carried out by means of gray level control to improve the energy uniformity to realize the manufacture of the high-precision model. A light curing molding detection system was set up to detect the edge of the model during the molding process. The real-time monitoring of the molding process was realized to ensure the forming accuracy of each layer and improve the molding quality. The building of the experiment bench for the manufacture of light-curing material was completed, the experimental research on the vertical forming precision was carried out, the curve of the relationship between the curing layer thickness and the illumination intensity and the illumination time was determined, and the experimental research on the horizontal direction forming precision was carried out. The molding accuracy is 鹵5.5 渭 m. The experiment of splicing molding is completed and the key technology is studied. The range of splicing molding is more than 10 脳 15 脳 15mm ~ (-3), which meets the requirements of technical specifications, and realizes the research of key technology of transmission chain without assembling once.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH16
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張安峰;李滌塵;梁少端;王潭;嚴(yán)深平;張連重;;高性能金屬零件激光增材制造技術(shù)研究進(jìn)展[J];航空制造技術(shù);2016年22期
2 方浩博;陳繼民;;基于數(shù)字光處理技術(shù)的3D打印技術(shù)[J];北京工業(yè)大學(xué)學(xué)報(bào);2015年12期
3 蘭紅波;李滌塵;盧秉恒;;微納尺度3D打印[J];中國(guó)科學(xué):技術(shù)科學(xué);2015年09期
4 邵中魁;姜耀林;;光固化3D打印關(guān)鍵技術(shù)研究[J];機(jī)電工程;2015年02期
5 蘭天;;3D打印技術(shù)應(yīng)用的意義[J];內(nèi)蒙古科技與經(jīng)濟(jì);2014年02期
6 李小麗;馬劍雄;李萍;陳琪;周偉民;;3D打印技術(shù)及應(yīng)用趨勢(shì)[J];自動(dòng)化儀表;2014年01期
7 吳平;;3D打印技術(shù)及其未來(lái)發(fā)展趨勢(shì)[J];印刷質(zhì)量與標(biāo)準(zhǔn)化;2014年01期
8 盧秉恒;李滌塵;;增材制造(3D打印)技術(shù)發(fā)展[J];機(jī)械制造與自動(dòng)化;2013年04期
9 李懷學(xué);鞏水利;孫帆;黃柏穎;;金屬零件激光增材制造技術(shù)的發(fā)展及應(yīng)用[J];航空制造技術(shù);2012年20期
10 韓希珍;趙建;;結(jié)合偏微分方程增強(qiáng)圖像紋理及對(duì)比度[J];光學(xué)精密工程;2012年06期
相關(guān)碩士學(xué)位論文 前1條
1 陳永亮;灰度圖像的直方圖均衡化處理研究[D];安徽大學(xué);2014年
,本文編號(hào):1979538
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1979538.html