剪式單元可展結(jié)構(gòu)的自由度及動(dòng)力學(xué)特性研究
本文選題:剪式單元 + 螺旋理論; 參考:《西北工業(yè)大學(xué)》2016年博士論文
【摘要】:可展結(jié)構(gòu)具有運(yùn)動(dòng)縮放、構(gòu)型保持的功能,故其廣泛應(yīng)用于航空、航天和建筑等領(lǐng)域?烧菇Y(jié)構(gòu)作為一種特殊的機(jī)械結(jié)構(gòu),能夠?qū)崿F(xiàn)機(jī)構(gòu)與結(jié)構(gòu)等構(gòu)型的相互轉(zhuǎn)變。組成可展結(jié)構(gòu)的單元有多種類型,具有大收縮比等優(yōu)點(diǎn)的剪式單元是其最常見的一種類型,并且按照不同的陣列方式可以形成不同的可展結(jié)構(gòu)。但是由剪式單元陣列組合而成的可展結(jié)構(gòu),是一個(gè)具有多閉環(huán)和多冗余約束等特點(diǎn)的多體組合結(jié)構(gòu)。正是由于剪式單元可展結(jié)構(gòu)這一復(fù)雜的結(jié)構(gòu)特性,所以在其設(shè)計(jì)和分析中,不僅要研究剪式單元可展結(jié)構(gòu)的型綜合等問題,而且還要深入研究其運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)特性,以及展開到位的構(gòu)型穩(wěn)定性。所以,本文對(duì)剪式單元可展結(jié)構(gòu)進(jìn)行自由度和動(dòng)力學(xué)特性的研究,具體的研究工作和創(chuàng)新點(diǎn)如下:(1)提出了剪式單元可展結(jié)構(gòu)的分解和組合方法,并基于螺旋理論建立了剪式單元可展結(jié)構(gòu)自由度的分析計(jì)算方法。首先,對(duì)剪式單元可展結(jié)構(gòu)進(jìn)行了結(jié)構(gòu)的分解,分解成一些基本的單元,并根據(jù)圖論方法繪制約束拓?fù)鋷缀螆D,進(jìn)而基于螺旋理論建立了約束螺旋方程;然后,將基本單元進(jìn)行組合成原來(lái)的可展結(jié)構(gòu),并根據(jù)螺旋理論進(jìn)行了自由度的計(jì)算;最后,再選取兩種不同陣列方式的剪式單元可展結(jié)構(gòu)進(jìn)行自由度計(jì)算和仿真。這一自由度的分析計(jì)算方法也為其他可展結(jié)構(gòu),或具有復(fù)雜幾何結(jié)構(gòu)的自由度的計(jì)算提供了一種分析思路。(2)對(duì)空間三剪式單元可展結(jié)構(gòu)進(jìn)行數(shù)學(xué)化,繪制了其拓?fù)鋷缀螆D,并推導(dǎo)了可展結(jié)構(gòu)的運(yùn)動(dòng)學(xué)公式,給出了螺旋速度和加速度與質(zhì)點(diǎn)在空間坐標(biāo)系下速度和加速的關(guān)系式。建立了可展結(jié)構(gòu)剪式單元的局部坐標(biāo)系,求得了構(gòu)件的質(zhì)心雅克比矩陣;诼菪碚摵吞摴υ,推導(dǎo)了剪式單元可展結(jié)構(gòu)的動(dòng)力學(xué)方程,進(jìn)而對(duì)可展結(jié)構(gòu)進(jìn)行了運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析。(3)研究了鉸鏈間隙對(duì)剪式單元可展結(jié)構(gòu)動(dòng)力學(xué)和運(yùn)動(dòng)同步性的影響。采用了L-N間隙模型,建立了考慮間隙的動(dòng)力學(xué)方程。并分別就鉸鏈間隙大小、間隙所處的位置和可展結(jié)構(gòu)展開速度等三個(gè)因素,對(duì)剪式單元可展結(jié)構(gòu)展開過程的影響進(jìn)行了研究,獲得了相應(yīng)的數(shù)據(jù)結(jié)果。根據(jù)數(shù)據(jù)結(jié)果,討論總結(jié)了以上三個(gè)因素對(duì)可展結(jié)構(gòu)展開過程動(dòng)力學(xué)特性的影響。(4)根據(jù)剪式單元可展結(jié)構(gòu)的幾何特點(diǎn),推導(dǎo)了在絕對(duì)節(jié)點(diǎn)坐標(biāo)下,可展結(jié)構(gòu)的固定約束和鉸鏈約束方程,并根據(jù)有限元技術(shù)組合形成可展結(jié)構(gòu)的總體剛度矩陣和質(zhì)量矩陣,建立了約束條件下可展結(jié)構(gòu)的結(jié)構(gòu)動(dòng)力學(xué)方程。采用了Newmark法對(duì)結(jié)構(gòu)動(dòng)力學(xué)方程進(jìn)行數(shù)值求解,并得到了相應(yīng)的數(shù)據(jù)結(jié)果,進(jìn)而研究了剪式單元可展結(jié)構(gòu)分別在力和速度的擾動(dòng)下,可展結(jié)構(gòu)的動(dòng)力學(xué)響應(yīng)問題。(5)設(shè)計(jì)并加工了剪式單元可展結(jié)構(gòu)的實(shí)驗(yàn)件,并搭建了相應(yīng)的實(shí)驗(yàn)臺(tái)。進(jìn)而測(cè)試了剪式單元可展結(jié)構(gòu)在鉸鏈間隙下的振動(dòng)加速度,進(jìn)行了相關(guān)數(shù)據(jù)的采集工作,并進(jìn)行了分析。本文為解決剪式單元可展結(jié)構(gòu)的自由度計(jì)算問題,提出了結(jié)構(gòu)的分解和組合方法,即可展結(jié)構(gòu)先分解成基本單元,然后再進(jìn)行組合,進(jìn)而求解了可展結(jié)構(gòu)的自由度。在螺旋理論的體系下,推導(dǎo)了具有多閉環(huán)和多冗余約束等特點(diǎn)的剪式單元可展結(jié)構(gòu)的運(yùn)動(dòng)學(xué)方程和質(zhì)心雅克比矩陣,并基于虛功原理,建立了可展結(jié)構(gòu)的動(dòng)力學(xué)方程。由于間隙是不可避免的,并且對(duì)可展結(jié)構(gòu)動(dòng)力學(xué)也具有不可忽視的影響,所以系統(tǒng)地研究了間隙這一因素,對(duì)剪式單元可展結(jié)構(gòu)在展開過程中動(dòng)力學(xué)特性的影響。剪式單元可展結(jié)構(gòu)在展開到位鎖止進(jìn)行工作時(shí),將會(huì)受到一定的擾動(dòng),進(jìn)而可展結(jié)構(gòu)會(huì)產(chǎn)生振動(dòng),嚴(yán)重時(shí)會(huì)影響其正常工作,所以基于絕對(duì)節(jié)點(diǎn)坐標(biāo)法,研究了可展結(jié)構(gòu)的動(dòng)力學(xué)響應(yīng)這一關(guān)乎其構(gòu)型穩(wěn)定性的問題。本文系統(tǒng)地研究了剪式單元可展結(jié)構(gòu)的自由度計(jì)算,和可展結(jié)構(gòu)在展開過程中和構(gòu)型保持時(shí)的動(dòng)力學(xué)特性,該研究工作不僅為機(jī)構(gòu)學(xué)和結(jié)構(gòu)學(xué)這一交叉學(xué)科的發(fā)展提供了理論基礎(chǔ),而且有助于可展結(jié)構(gòu)的應(yīng)用和進(jìn)一步推廣。
[Abstract]:The deployable structure has the functions of zoom and configuration, so it is widely used in the fields of aviation, space and architecture. As a special mechanical structure, the deployable structure can realize the transformation of the structure of mechanism and structure. There are many kinds of units which make up the deployable structure, and the shear units with the advantages of large shrinkage ratio are the most important. A common type, and can form different deployable structures according to different array modes. But the deployable structure composed of shear unit arrays is a multi body composite structure with characteristics of multiple closed-loop and multiple redundancy constraints. It is precisely because of the complex structural characteristics of the extensible structure of the shear unit, so it is designed in its design. In the analysis, it is not only to study the problem of the type synthesis of the extensible structure of the shear unit, but also to study its kinematic and dynamic characteristics, as well as the stability of the configuration in place. Therefore, the research on the freedom and dynamics of the extensible structure of the shear unit is studied in this paper. The specific research work and innovation are as follows: (1) The method of decomposition and combination of the extensible structure of the shear unit is made, and the analysis and calculation method of the extensible structural freedom of the shear unit is established based on the spiral theory. First, the structure of the extensible structure of the shear unit is decomposed into some basic units, and the topological geometric maps are drawn according to the graph theory method and then based on the helix theory. The constraint helix equation is established. Then, the basic units are combined into the original extensible structure, and the degree of freedom is calculated according to the spiral theory. Finally, the free degree calculation and Simulation of the two different array modes are selected for the freedom degree. The analysis and calculation method of this degree of freedom is also other deployable structure, The calculation of the degree of freedom with complex geometric structure provides an analytical idea. (2) the deployable structure of the space three shear unit is mathematically transformed, its topological geometry is drawn, and the kinematic formula of the deployable structure is derived, and the relation between the velocity and acceleration of the spiral velocity and acceleration and the particle in the space coordinate system is given. The centroid Jacobi matrix of the extensible structural shear unit is obtained. Based on the theory of spiral and virtual work, the dynamic equation of the deployable structure of the shear element is derived, and the kinematic and dynamic analysis of the deployable structure is carried out. (3) the dynamic and movement of the articulated structure of the shear element is studied. The L-N gap model is used to establish the dynamic equation of the gap, and three factors, such as the size of the hinges, the position of the gap and the expansion speed of the deployable structure, are respectively studied. The results of the data are obtained. The results of the data are discussed. The influence of the above three factors on the dynamic characteristics of the deployable structure is summarized. (4) according to the geometric characteristics of the deployable structure of the shear element, the fixed and hinge constraint equations of the deployable structure under the absolute node coordinates are derived, and the overall stiffness matrix and mass matrix of the deployable structure are formed according to the finite element technique. The structural dynamic equations of the deployable structure under constraint conditions are established. The Newmark method is used to solve the structural dynamic equations and the corresponding data results are obtained. Then the dynamic response of the deployable structure of the shear element under the disturbance of force and velocity is studied. (5) the shear unit is designed and machined. The experimental parts of the deployable structure are set up and the corresponding experimental bench is set up. Then the vibration acceleration of the extensible structure of the shear unit under the hinges gap is tested and the relevant data acquisition work is carried out, and the analysis is carried out. In order to solve the problem of the free degree calculation of the extensible structure of the shear unit, the method of decomposition and combination of the structure is put forward. In the system of spiral theory, the kinematic equation and the centroid Jacobian matrix of the extensible structure with multiple closed loop and multiple redundancy constraints are derived. Based on the principle of virtual work, the dynamics of the deployable structure are established. As the gap is unavoidable and has an unnegligible effect on the dynamics of deployable structures, the factor of clearance is systematically studied and the influence of the deployable structure of the shear unit on the dynamic characteristics of the deployable structure. The disturbance, and then the deployable structure will produce vibration, and it will affect its normal work seriously. Therefore, based on the absolute node coordinate method, the dynamic response of the deployable structure is studied on the problem of its configuration stability. This paper systematically studies the calculation of the freedom degree of the deployable structure of the shear unit, and the deployable structure in the expansion process and the configuration. The research work not only provides a theoretical basis for the development of the cross discipline of institutional and structural science, but also contributes to the application and further extension of the deployable structure.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TH112
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 湯紅鶯;殷際英;;基于雙剪式連桿機(jī)構(gòu)汽車預(yù)裝上線系統(tǒng)的研究[J];廣東科技;2009年22期
2 田哲文;明守政;李聰聰;鄧亞東;王海良;;一種新型電動(dòng)剪式車門開閉機(jī)構(gòu)及動(dòng)力學(xué)仿真[J];武漢理工大學(xué)學(xué)報(bào);2008年06期
3 白成志;剪式轎車舉升機(jī)的設(shè)計(jì)[J];機(jī)械工程師;2002年10期
4 呂碩;;剪式舉升機(jī)的數(shù)字化樣機(jī)設(shè)計(jì)和分析[J];煤礦機(jī)械;2013年08期
5 劉樹青;王興松;朱正龍;;一種剪式可展結(jié)構(gòu)設(shè)計(jì)與動(dòng)力學(xué)分析[J];機(jī)械設(shè)計(jì);2011年10期
6 徐曉美;朱思洪;;一種剪式座椅振動(dòng)特性的理論分析[J];中國(guó)機(jī)械工程;2006年08期
7 孫遠(yuǎn)濤;王三民;劉霞;;剪式機(jī)構(gòu)線性陣列可展結(jié)構(gòu)的動(dòng)力學(xué)特性研究[J];中國(guó)機(jī)械工程;2012年24期
8 劉樹青;王興松;;剪式可展機(jī)構(gòu)非線性動(dòng)力學(xué)分析子系統(tǒng)方法[J];振動(dòng)與沖擊;2013年07期
9 劉恒;;螺桿螺母副驅(qū)動(dòng)的剪式機(jī)構(gòu)的設(shè)計(jì)[J];機(jī)電工程技術(shù);2010年08期
10 徐曉美;朱思洪;;基于MBS的剪式座椅靜態(tài)和動(dòng)態(tài)特性仿真研究[J];機(jī)械科學(xué)與技術(shù);2006年06期
相關(guān)會(huì)議論文 前1條
1 徐曉美;朱思洪;;一種剪式座椅振動(dòng)特性的理論分析[A];可持續(xù)發(fā)展的中國(guó)交通——2005全國(guó)博士生學(xué)術(shù)論壇(交通運(yùn)輸工程學(xué)科)論文集(下冊(cè))[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 孫遠(yuǎn)濤;剪式單元可展結(jié)構(gòu)的自由度及動(dòng)力學(xué)特性研究[D];西北工業(yè)大學(xué);2016年
,本文編號(hào):1905232
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1905232.html