高溫磁力泵基于多場耦合數(shù)值分析的結(jié)構(gòu)優(yōu)化和實驗研究
發(fā)布時間:2018-05-12 10:19
本文選題:高溫電磁泵 + 電磁驅(qū)動裝置 ; 參考:《合肥工業(yè)大學(xué)》2015年碩士論文
【摘要】:磁力驅(qū)動泵因其靜密封無泄漏的特點,在輸送危險、高溫、高壓、貴重等特殊介質(zhì)時應(yīng)用廣泛。特別是最近幾年,隨著磁力驅(qū)動裝置技術(shù)的日趨成熟,越來越多的設(shè)計者們希望此項技術(shù)能應(yīng)用在極端工作環(huán)境中。 本文根據(jù)實際生產(chǎn)需求,設(shè)計了一款高溫電磁泵;通過采用多耦合場理論對其散熱結(jié)構(gòu)、電磁驅(qū)動裝置進行了數(shù)值模擬分析,并以此為基礎(chǔ),通過對其泵體、電磁驅(qū)動裝置的結(jié)構(gòu)優(yōu)化來提高其工作性能。其中,主要的研究內(nèi)容如下: 1.簡述了磁力泵及磁力驅(qū)動裝置的發(fā)展過程,并對現(xiàn)有各種類型的磁力泵的工作原理及結(jié)構(gòu)特點進行了歸納,最終得出高溫退磁是永磁型磁力泵在運輸高溫高壓介質(zhì)時扭矩傳遞效率下降的主要原因。 2.對于現(xiàn)有永磁型磁力泵在運輸高溫高壓介質(zhì)時所存在的缺陷,結(jié)合現(xiàn)有磁力泵的結(jié)構(gòu),設(shè)計出一款新型高溫電磁泵;通過對其電磁驅(qū)動裝置的鼠籠式內(nèi)轉(zhuǎn)子、線圈外定子的設(shè)計,使所設(shè)計的電磁驅(qū)動裝置避免了高溫退磁的問題;同時泵體散熱結(jié)構(gòu)的確定,有效地防止了泵體密封腔中輸送介質(zhì)高溫高壓對電磁驅(qū)動裝置工作的影響。 3.分析了所設(shè)計的高溫電磁泵工況下多個物理場的耦合機理理論,總結(jié)了求解電磁驅(qū)動裝置傳遞力矩的計算方法,為對其結(jié)構(gòu)進行數(shù)值模擬時建立模型、確定算法提供了理論依據(jù)。 4.分別對所設(shè)計的高溫電磁泵的散熱結(jié)構(gòu)和電磁驅(qū)動裝置進行了數(shù)值仿真模擬,并根據(jù)所得結(jié)論,對相應(yīng)的散熱機構(gòu)和電磁驅(qū)動裝置的結(jié)構(gòu)優(yōu)化方向進行了確定。 5.設(shè)計并搭建相關(guān)實驗平臺,對所得數(shù)值模擬仿真結(jié)果進行試驗校核;并根據(jù)最大切應(yīng)力理論,對實驗臺重要零部件的可靠性進行了校核。
[Abstract]:Magnetic drive pump is widely used in transportation of dangerous, high temperature, high pressure, precious and other special media because of its characteristics of no leakage in static seal. Especially in recent years, with the maturation of magnetic drive device technology, more and more designers hope that the technology can be applied in extreme working environment. According to the actual production demand, a high temperature electromagnetic pump is designed in this paper, and its heat dissipation structure and electromagnetic driving device are numerically simulated and analyzed by adopting the multi-coupling field theory, and based on this, the pump body is analyzed. The structure of electromagnetic drive device is optimized to improve its performance. Among them, the main research contents are as follows: 1. The development process of magnetic pump and magnetic drive device is briefly described, and the working principle and structure characteristics of various types of magnetic pump are summarized. Finally, it is concluded that high temperature demagnetization is the main reason for the decrease of torque transfer efficiency of permanent magnet magnetic pump when transporting high temperature and high pressure medium. 2. For the defects of the existing permanent magnet magnetic pump in transporting high temperature and high pressure medium, a new type of high temperature electromagnetic pump is designed according to the structure of the existing magnetic pump. The design of the outer stator of the coil avoids the problem of high temperature demagnetization and the determination of the heat dissipation structure of the pump body effectively prevents the influence of the high temperature and high pressure of the conveying medium in the sealing chamber of the pump body on the work of the electromagnetic drive device. 3. The coupling mechanism theory of several physical fields under the condition of the designed high temperature electromagnetic pump is analyzed, and the calculation method for calculating the transfer moment of electromagnetic drive device is summarized. The model is established for the numerical simulation of its structure. A theoretical basis is provided for determining the algorithm. 4. The heat dissipation structure and electromagnetic driving device of the designed high temperature electromagnetic pump are simulated numerically, and the optimization direction of the corresponding heat dissipation mechanism and electromagnetic drive device is determined according to the conclusions obtained. 5. The experimental platform was designed and built to verify the results of numerical simulation, and the reliability of important parts of the test bench was checked according to the theory of maximum shear stress.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TH35
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 袁丹青;何有泉;陳向陽;李建萍;張賀;;磁力泵的研究現(xiàn)狀與發(fā)展前景[J];磁性材料及器件;2011年02期
2 王紅,王海,王士和;磁路計算的新方法[J];電氣開關(guān);1995年02期
3 孫雨施;關(guān)于永磁的計算模型[J];電子學(xué)報;1982年05期
4 彭元東,李麗婭,杜娟,周庭,陳忠文,易健宏;新型高溫永磁體的研制[J];粉末冶金材料科學(xué)與工程;2003年03期
5 DougTwyford;英國HMD公司無泄漏磁力驅(qū)動泵的開發(fā)與研制[J];化工裝備技術(shù);1997年03期
6 龔光彩,梅熾,周萍;關(guān)于多場耦合問題的幾個概念探討[J];湖南大學(xué)學(xué)報(自然科學(xué)版);1999年06期
7 金瑞湘;高溫稀土永磁材料[J];電工材料;2001年01期
8 趙韓,王勇,田杰;磁力機械研究綜述[J];機械工程學(xué)報;2003年12期
9 趙韓,王勇;徑向電磁軸承結(jié)構(gòu)設(shè)計與分析[J];農(nóng)業(yè)機械學(xué)報;2005年07期
10 黃建軍;孔繁余;呂毅;景斌;;無密封泵運行監(jiān)控設(shè)計[J];水泵技術(shù);2007年05期
,本文編號:1878214
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1878214.html
最近更新
教材專著