基于柔順機(jī)構(gòu)的人工晶狀體設(shè)計、制備及實(shí)驗研究
本文選題:人工晶狀體 + 柔順機(jī)構(gòu); 參考:《北京工業(yè)大學(xué)》2016年博士論文
【摘要】:柔順襻人工晶狀體是人工晶狀體(intraocular lens,IOL)與柔順機(jī)構(gòu)相融合形成的新型IOL,由于使用柔性鉸鏈傳遞機(jī)構(gòu)運(yùn)動,結(jié)合柔順微位移放大機(jī)構(gòu)設(shè)計,可從根本上解決傳統(tǒng)襻結(jié)構(gòu)調(diào)節(jié)力不足的問題,從而有效提高IOL的屈光能力。目前,國內(nèi)外研究主要集中在IOL光學(xué)部可以產(chǎn)生超大形貌變化的生物醫(yī)學(xué)材料的開發(fā)研制以及具有微調(diào)節(jié)作用的IOL襻結(jié)構(gòu)的構(gòu)型設(shè)計和形變分析上,而結(jié)合機(jī)構(gòu)學(xué)理論的IOL構(gòu)型設(shè)計這一交叉研究新方向尚未被提出,使用柔順微位移放大機(jī)構(gòu)替代傳統(tǒng)襻結(jié)構(gòu)所帶來的優(yōu)越性也尚未被揭示出來。因此,開展基于柔順機(jī)構(gòu)的IOL襻結(jié)構(gòu)研究具有重要的理論意義和廣闊的應(yīng)用前景。本文以IOL為研究對象,圍繞IOL的建模、設(shè)計、制備以及實(shí)驗四個方面,開展了系統(tǒng)的理論和實(shí)驗研究。在建模方面:建立了新型人眼晶狀體和IOL的結(jié)構(gòu)參數(shù)化模型與屈光有限元模型。根據(jù)不同來源、不同個體的活體眼晶狀體及其周圍組織的形態(tài)和生理特點(diǎn),以患者年齡為自變量,以晶狀體囊膜和核的直徑、厚度、前后極點(diǎn)曲率半徑為因變量,并進(jìn)一步考慮了赤道部脊的寬度以及囊膜在極點(diǎn)處厚度情況,建立了人眼晶狀體結(jié)構(gòu)的三維參數(shù)化模型,并依此設(shè)計了IOL光學(xué)部的結(jié)構(gòu)參數(shù)。這些工作為開展IOL光學(xué)部的設(shè)計及實(shí)驗研究提供了有效工具。在設(shè)計方面:首先,基于晶狀體皮質(zhì)的折射率梯度模型和屈光有限元模型,首次提出使用聚二甲基硅氧烷(polydimethylsiloxane,PDMS)生物醫(yī)學(xué)材料作為IOL光學(xué)部材料,研究了不同調(diào)節(jié)幅度對光學(xué)部形貌變化及屈光力的影響。其次,基于杠桿原理和三角原理分別開展了IOL襻結(jié)構(gòu)的研究。針對IOL調(diào)節(jié)力不足的問題對柔性關(guān)節(jié)進(jìn)行了設(shè)計,通過定義中間參數(shù),推導(dǎo)出了橢圓弧型柔性鉸鏈在平面受力狀態(tài)下的柔度計算公式,分析了切口處幾何形狀、尺寸及最小厚度與鉸鏈性能之間的關(guān)系,通過有限元分析多個不同尺寸的橢圓弧型柔性鉸鏈,印證了理論分析的正確性。采用多個單級放大機(jī)構(gòu)疊加的組合方式,分別設(shè)計了適用于囊袋內(nèi)的基于杠桿原理和三角原理的柔順微位移放大機(jī)構(gòu),兩種機(jī)構(gòu)的末端輸出位移分別放大約10倍和25倍,大幅度提高了輸出位移,表明了設(shè)計方案的有效性。再次,基于結(jié)構(gòu)拓?fù)鋬?yōu)化技術(shù)開展了IOL襻結(jié)構(gòu)的設(shè)計。利用拓?fù)鋬?yōu)化技術(shù)和有限元方法,以結(jié)構(gòu)末端輸出端位移最大化和質(zhì)量最小化為優(yōu)化目標(biāo),建立了優(yōu)化數(shù)學(xué)模型,結(jié)合Hypermesh拓?fù)鋬?yōu)化模塊建立拓?fù)鋬?yōu)化結(jié)構(gòu)模型,分別進(jìn)行剛性幾何模型和柔性幾何模型的重建及仿真分析。通過改變設(shè)計域高度,獲得了滿足不同設(shè)計域的結(jié)構(gòu),并探尋到構(gòu)型與設(shè)計域之間的變化規(guī)律;通過對相同設(shè)計域內(nèi)的結(jié)構(gòu)進(jìn)行對比分析,總結(jié)了機(jī)構(gòu)各部件的幾何參數(shù)與放大比之間的規(guī)律,設(shè)計了可滿足于不同設(shè)計域,實(shí)現(xiàn)不同倍數(shù)放大的初始微位移放大機(jī)構(gòu)的參數(shù)化模型。在制備方面:提出了IOL光學(xué)部和襻結(jié)構(gòu)的新型制備工藝;谝后w表面張力現(xiàn)象,考慮材料間的浸潤性問題,采用PDMS材料,通過控制溫度、體積、時間的變化,以懸滴的方式三步成型制備雙凸透鏡,形成多種表面曲率組合的雙凸透鏡。基于3D打印技術(shù),通過Solid Edge三維模型轉(zhuǎn)換成STL文件格式,導(dǎo)入切片軟件后,調(diào)整操作參數(shù),整體放大結(jié)構(gòu)比例(5倍),完成四種微位移放大機(jī)構(gòu)的制備。測量結(jié)果表明,柔性鉸鏈部分的制造誤差不超過5%。在實(shí)驗方面:進(jìn)行了IOL光學(xué)部光學(xué)性能、光襻結(jié)構(gòu)的形貌及位移變化和IOL屈光調(diào)節(jié)的實(shí)驗研究;谖闹薪⒌尿(qū)動系統(tǒng)平臺,使用焦距測量系統(tǒng)測得PDMS透鏡的屈光力約為277.001D,與理想結(jié)果相差僅為2.2%,表明了建立的焦距測量系統(tǒng)的可行性和準(zhǔn)確性。進(jìn)行光學(xué)部屈光力測量和襻結(jié)構(gòu)輸出放大比的測量,結(jié)果表明,與未發(fā)生調(diào)節(jié)作用時相比,PDMS透鏡的焦距最大可減小至約3.01mm,在空氣中的最大屈光能力可以達(dá)到約327.226D。杠桿機(jī)構(gòu)和三角機(jī)構(gòu)的實(shí)際位移放大比比理想值降低了約50%,而采用拓?fù)鋬?yōu)化方法設(shè)計的機(jī)構(gòu)的實(shí)際放大比與理想放大比較為相近;谌搜酃鈱W(xué)系統(tǒng)的工作原理,建立了IOL的光學(xué)系統(tǒng)模型,IOL在蒸餾水中的最高屈光能力約23.02D,達(dá)到并超過了預(yù)期設(shè)計目標(biāo)(8.0D的正常生理調(diào)節(jié)水平),顯著提高了IOL的調(diào)節(jié)幅度,驗證了本文提出的通過改變IOL光學(xué)部形貌來增加調(diào)節(jié)幅度的方法的有效性,以及在有限操作域內(nèi)以柔順微位移放大機(jī)構(gòu)替代傳統(tǒng)單一襻結(jié)構(gòu)進(jìn)一步增加調(diào)節(jié)幅度的可行性和有效性。
[Abstract]:The flexible loop IOL is a new type of IOL which is formed by the fusion of intraocular lens (IOL) and the compliant mechanism. Due to the use of flexible hinge transfer mechanism and the design of compliant micro displacement amplification mechanism, it can fundamentally solve the problem of insufficient regulating force of the traditional loop structure, thus effectively improving the refractive power of IOL. The internal and external research focuses on the development and development of biomedical materials which can produce ultra large morphologies in the IOL optics, and the configuration design and deformation analysis of the IOL loop structure with micro regulation. The new direction of the cross study, which combines the IOL configuration design of the mechanism theory, has not yet been put forward, and the flexible micro displacement amplification mechanism is used. The advantages of replacing the traditional loop structure have not been revealed. Therefore, it is of great theoretical significance and broad application prospect to carry out the research on the IOL loop structure based on the compliant mechanism. This paper takes IOL as the research object, and carries out the theoretical and Experimental Research on the modeling, design, preparation and experiment of IOL in four aspects. In the modeling aspect, the structural parameterization model and the refractive finite element model of the new human eye lens and IOL were established. According to the different sources, the morphological and physiological characteristics of the lens and the surrounding tissues of the living eye of the different individuals were based on the patient's age as the independent variable, the diameter of the capsule and nucleus of the lens, the thickness, the radius of the radius of the curvature of the pole and the pole. In addition, the width of the equatorial ridge and the thickness of the capsule at the pole are considered. A three-dimensional parametric model of the lens structure of the human eye is established, and the structural parameters of the IOL optical part are designed. These work provide an effective tool for the design and experimental research of the IOL optics. The refractive index gradient model and the refractive finite element model of the cortex have been proposed for the first time using polymethylsiloxane (polydimethylsiloxane, PDMS) biomedical materials as IOL optical materials. The effects of different amplitude of adjustment on the change of optical morphology and the refractive power are studied. Secondly, the IOL haptics are carried out based on the principle of lever and the principle of trigonometry. The flexible joint is designed for the lack of IOL regulation force. By defining the intermediate parameters, the flexibility calculation formula of the elliptical arc flexure hinge under the plane force is derived. The relationship between the geometric shape, the size and the minimum thickness of the notch and the performance of the hinge chain is analyzed, and a number of finite element analysis is used to analyze the joint. The correctness of the theoretical analysis is confirmed by the different sizes of the flexible hinges of elliptical arc type. The flexible micro displacement amplification mechanism, based on the principle of lever and the trigonometric principle, is designed, using the superposition method of multiple single stage magnifying mechanisms. The end output displacement of the two mechanisms is about 10 times and 25 times respectively. The output displacement is improved and the effectiveness of the design scheme is demonstrated. Thirdly, the design of the IOL loop structure is carried out based on the topology optimization technology of structure. By using the topology optimization technique and the finite element method, the optimization mathematical model is established with the optimization goal of the maximum output end displacement and the quality minimization of the structure, and the Hypermesh topology optimization model is established. The block topology optimization structure model is set up to reconstruct and simulate the rigid geometric model and the flexible geometric model respectively. By changing the height of the design domain, the structure which satisfies the different design domains is obtained, and the changes between the configuration and the design domain are explored. The structure of the same design domain is compared and analyzed, and the machine is summarized. The parameters between the geometric parameters and the magnification ratio are constructed, and a parameterized model for the initial micro displacement amplification mechanism with different magnification is designed. In preparation, a new preparation process of the IOL optical and loop structure is proposed. Based on the liquid surface tension, the wettability of the material is considered. By using PDMS material, by controlling the change of temperature, volume and time, the double convex lens is prepared by three steps of hanging drop, and a variety of double convex lens with surface curvature combination is formed. Based on 3D printing technology, the Solid Edge 3D model is converted into a STL file format, and the operation parameters are adjusted, and the overall amplification structure ratio (5) is adjusted. The measurement results show that the manufacturing error of the flexure hinge part is not more than 5%. in the experiment: the optical properties of the IOL optics, the change of the shape and displacement of the loop structure and the experimental study of the IOL diopter are carried out. Based on the driving system platform established in this paper, the focal distance measurement system is used. The refractive power of the PDMS lens is about 277.001D, and the difference between the ideal result is only 2.2%, indicating the feasibility and accuracy of the established focal length measurement system. The measurement of the optical refractive power and the loop structure output amplification ratio is measured. The results show that the focal length of the PDMS lens can be reduced to about 3.01mm, as compared with the non regulation effect. The maximum refractive power in the air can reach about 50% of the actual displacement amplification ratio of about 327.226D. lever mechanism and trigonometric mechanism, and the actual amplification ratio of the mechanism designed by topology optimization is similar to that of the ideal amplification. Based on the working principle of the human eye optical system, the optical system model of IOL is established, I The maximum refractive power of OL in distilled water is about 23.02D, reaching and exceeding the expected design target (the normal physiological regulation level of 8.0D), which significantly improves the adjustment range of IOL. The validity of the method proposed in this paper is proposed by changing the morphology of the IOL optics to increase the amplitude of the adjustment, and the flexible micro displacement is placed in the limited operating domain. Large organizations replace traditional single loop structures to further increase the feasibility and effectiveness of adjustment.
【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TH112
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 段振云;解寶利;張福利;姜寶光;;人工晶狀體加工工藝研究[J];組合機(jī)床與自動化加工技術(shù);2013年08期
2 ;[J];;年期
相關(guān)會議論文 前10條
1 李筱榮;劉巨平;;特殊類型人工晶狀體(綜述)[A];天津市生物醫(yī)學(xué)工程學(xué)會2006年學(xué)術(shù)年會論文摘要集[C];2006年
2 J.T.Lin;;可調(diào)人工晶狀體之最新進(jìn)展(英文)[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
3 湯欣;;擬調(diào)節(jié)人工晶狀體特性及臨床應(yīng)用[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
4 林振德;;人工晶狀體光學(xué)面與袢設(shè)計新進(jìn)展[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
5 王軍;;不同人工晶狀體的設(shè)計與完美視覺質(zhì)量的需求[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
6 袁非;尤宇一;王歷陽;黎蕾;;幾種特殊人工晶狀體的調(diào)制傳遞函數(shù)與視覺[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
7 劉金梅;魏道貞;;人工晶狀體前和/或后機(jī)化膜的手術(shù)治療[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
8 湯霞靖;姚克;;非球面人工晶狀體與球面人工晶狀體影響人工晶狀體眼球差和視覺質(zhì)量的對比研究[A];2006年浙江省眼科學(xué)術(shù)會議論文集[C];2006年
9 葉向_g;曹景;盛耀華;;人工晶狀體置換術(shù)8例臨床分析[A];中華醫(yī)學(xué)會第十二屆全國眼科學(xué)術(shù)大會論文匯編[C];2007年
10 ;河南宇宙人工晶狀體研制有限公司公司簡介[A];第十次全省中、西醫(yī)眼科學(xué)術(shù)交流會(暨吉安地區(qū)眼科專委會成立會議)學(xué)術(shù)論文集[C];2010年
相關(guān)重要報紙文章 前3條
1 ;新型人工晶狀體研究獲進(jìn)展[N];中國醫(yī)藥報;2003年
2 健康時報特約記者 李新萍;人工晶狀體也分軟硬[N];健康時報;2010年
3 余志平;矯正老視眼有了新選擇[N];中國醫(yī)藥報;2005年
相關(guān)博士學(xué)位論文 前8條
1 杜秋月;基于柔順機(jī)構(gòu)的人工晶狀體設(shè)計、制備及實(shí)驗研究[D];北京工業(yè)大學(xué);2016年
2 姜嬋;層層自組裝法載藥型人工晶狀體的制備及其性能研究[D];浙江大學(xué);2016年
3 趙寒昕;人工晶狀體取出及置換術(shù)的原因分析[D];浙江大學(xué);2014年
4 李君;外傷性虹膜缺如眼植入虹膜隔人工晶狀體的遠(yuǎn)期隨訪及植入技術(shù)改進(jìn)[D];青島大學(xué);2013年
5 田芳;國產(chǎn)親水性丙烯酸人工晶狀體的生物相容性研究[D];天津醫(yī)科大學(xué);2010年
6 曲超;人工晶狀體表面改性的實(shí)驗研究[D];浙江大學(xué);2004年
7 丁文婷;襻上嵌有藥物緩釋微球新型人工晶狀體的研制及其抗菌性能的研究[D];浙江大學(xué);2015年
8 于華軍;近視眼LASIK術(shù)后人工晶狀體屈光度測算中應(yīng)用矯正角膜曲率的效能檢驗[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 錢素琴;四種人工晶狀體屈光度計算公式及其眼軸優(yōu)化公式在長度大于26.0mm眼中的應(yīng)用比較[D];山西醫(yī)科大學(xué);2016年
2 車轔;Shammas-PL公式預(yù)測準(zhǔn)分子術(shù)后人工晶狀體屈光度的臨床觀察[D];吉林大學(xué);2016年
3 喬文;液體人工晶狀體研究[D];浙江大學(xué);2009年
4 劉冬生;TiO_2/PMMA人工晶狀體的制備及動物安全性評價[D];福建醫(yī)科大學(xué);2009年
5 杜曉玲;人工晶狀體眼調(diào)節(jié)力的臨床研究[D];鄭州大學(xué);2006年
6 李路路;可調(diào)節(jié)人工晶狀體矯治老視的效果[D];安徽醫(yī)科大學(xué);2014年
7 張麗華;PMMA人工晶狀體的等離子體改性研究[D];陜西師范大學(xué);2008年
8 李亞新;高度近視患者白內(nèi)障手術(shù)植入不同人工晶狀體的臨床研究[D];大連醫(yī)科大學(xué);2014年
9 解寶利;疏水性可折疊人工晶狀體的常溫加工技術(shù)研究[D];沈陽工業(yè)大學(xué);2013年
10 羅霄;兩種人工晶狀體應(yīng)用于高度近視白內(nèi)障的臨床觀察[D];廣西醫(yī)科大學(xué);2015年
,本文編號:1817244
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1817244.html