行星齒輪減速器傳動(dòng)裝置分析與研究
本文選題:行星齒輪減速器 + ANSYS靜力學(xué)仿真; 參考:《長(zhǎng)安大學(xué)》2015年碩士論文
【摘要】:行星齒輪減速器在機(jī)械傳動(dòng)過程中具有眾多優(yōu)點(diǎn),因此被廣泛的應(yīng)用于機(jī)械行業(yè)。傳統(tǒng)設(shè)計(jì)由于條件限制無法進(jìn)行多次實(shí)體實(shí)驗(yàn),因此設(shè)計(jì)周期過長(zhǎng)、設(shè)計(jì)成本高、產(chǎn)品質(zhì)量較低。為解決這一問題,本文主要將計(jì)算機(jī)引入設(shè)計(jì)過程中,用虛擬的實(shí)驗(yàn)代替?zhèn)鹘y(tǒng)實(shí)體實(shí)驗(yàn)作為研究課題。本文利用Solidworks軟件建立NGW31行星齒輪減速器三維模型,選取減速器最核心的傳動(dòng)裝置作為研究對(duì)象,對(duì)其利用Ansys軟件進(jìn)行有限元模型分析,五階自由模態(tài)分析求出固有頻率與振型圖。給傳動(dòng)裝置施加載荷,對(duì)輸出軸和整個(gè)傳動(dòng)裝置進(jìn)行靜力學(xué)計(jì)算分析,獲得輸出軸與傳動(dòng)裝置的應(yīng)力應(yīng)變?cè)茍D。將應(yīng)力與應(yīng)變?cè)茍D與材料的屈服極限對(duì)比計(jì)算,判斷傳動(dòng)軸與傳動(dòng)裝置的設(shè)計(jì)強(qiáng)度是否可靠。對(duì)行星齒輪減速器的傳動(dòng)比、各軸角速度、太陽(yáng)輪與行星輪間嚙合力、行星輪與內(nèi)齒輪間嚙合力、嚙合頻率進(jìn)行理論計(jì)算。利用Adams軟件對(duì)行星齒輪減速建立虛擬樣機(jī)模型,并對(duì)傳動(dòng)裝置模型進(jìn)行動(dòng)力學(xué)仿真,仿真出各軸的角速度曲線圖、太陽(yáng)輪與行星輪間的圓周力與徑向力的時(shí)域頻域圖、行星輪與內(nèi)齒輪間的圓周力與徑向力的時(shí)域頻域圖,將這些仿真曲線與理論計(jì)算對(duì)比分析,得出理論值與仿真值誤差,根據(jù)誤差判斷建立虛擬樣機(jī)是否可靠的,若可靠即可,否則重新修改參數(shù)再進(jìn)行虛擬實(shí)驗(yàn)仿真。利用此種方法不斷進(jìn)行虛擬樣機(jī)優(yōu)化實(shí)驗(yàn),進(jìn)而得到最優(yōu)系統(tǒng),從而縮短了研發(fā)周期、減少了設(shè)計(jì)開發(fā)費(fèi)用,提高了產(chǎn)品質(zhì)量,具有較好的工程使用價(jià)值。本文通過對(duì)NGW31行星齒輪減速器傳動(dòng)裝置的靜力學(xué)仿真、動(dòng)力學(xué)仿真,得出該行星齒輪減速器材料強(qiáng)度可靠、虛擬樣機(jī)可靠。
[Abstract]:Planetary gear reducer has many advantages in mechanical transmission, so it is widely used in mechanical industry. The traditional design can not carry out many solid experiments because of the limitation of conditions, so the design cycle is too long, the design cost is high, and the product quality is low. In order to solve this problem, this paper mainly introduces the computer into the design process, using virtual experiment instead of traditional solid experiment as the research subject. In this paper, the three-dimensional model of NGW31 planetary gear reducer is established by using Solidworks software. The most core transmission device of the reducer is selected as the research object, and the finite element model is analyzed by using Ansys software. The natural frequencies and mode shapes are obtained by free modal analysis of the fifth order. The stress and strain cloud diagram of the output shaft and the transmission device are obtained by statics calculation and analysis of the output shaft and the whole transmission device by applying the load to the transmission device. By comparing the stress and strain cloud diagram with the yield limit of the material, the reliability of the design strength of the transmission shaft and transmission device is judged. The transmission ratio of planetary gear reducer, the angular velocity of each axis, the meshing force between solar and planetary gears, the meshing force between planetary gear and inner gear, and the meshing frequency are calculated theoretically. The virtual prototype model of planetary gear deceleration is established by using Adams software, and the dynamic simulation of the transmission device model is carried out. The angular velocity curve of each axis and the time-domain frequency domain diagram of the circumferential force and radial force between the sun wheel and the planetary wheel are simulated. The time domain frequency domain diagram of the circular force and radial force between the planetary gear and the inner gear is compared with the theoretical calculation, and the error between the theoretical value and the simulation value is obtained. According to the error, the reliability of the virtual prototype can be determined, if it is reliable, Otherwise, the parameters are modified and the virtual experiment simulation is carried out. By using this method, the virtual prototype optimization experiment is carried out continuously, and the optimal system is obtained, thus shortening the research and development cycle, reducing the design and development cost, improving the product quality, and having good engineering application value. Based on the static and dynamic simulation of NGW31 planetary gear reducer, it is concluded that the material strength of the planetary gear reducer is reliable and the virtual prototype is reliable.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TH132.46
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 王斌;;行星傳動(dòng)原理在NGW型減速器中應(yīng)用[J];機(jī)械設(shè)計(jì)與制造;2011年05期
2 徐愷;鄧效忠;吳劍;尚振東;;行星傳動(dòng)系統(tǒng)的快速虛擬裝配[J];機(jī)械傳動(dòng);2008年01期
3 肖敏;曾小蘭;;三種計(jì)算行星齒輪機(jī)構(gòu)傳動(dòng)比的方法及其比較[J];機(jī)械工程師;2006年11期
4 李同杰;朱如鵬;鮑和云;項(xiàng)昌樂;劉輝;;行星齒輪系扭轉(zhuǎn)非線性振動(dòng)建模與運(yùn)動(dòng)分岔特性研究[J];機(jī)械工程學(xué)報(bào);2011年21期
5 葉紹松,阮祥發(fā),趙燕;有限元法在結(jié)構(gòu)分析中的應(yīng)用[J];機(jī)械研究與應(yīng)用;2005年04期
6 施洪生;滕健;;Solid Works中行星齒輪傳動(dòng)的快速裝配[J];中國(guó)制造業(yè)信息化;2006年11期
7 張融;王偉;張秀梅;;基于SolidWorks的行星齒輪機(jī)構(gòu)實(shí)體建模與虛擬裝配[J];機(jī)械制造與自動(dòng)化;2010年06期
相關(guān)碩士學(xué)位論文 前7條
1 王麗軍;船閘結(jié)構(gòu)內(nèi)力的分析與研究[D];合肥工業(yè)大學(xué);2006年
2 張?zhí)炝?電子設(shè)備硬振設(shè)計(jì)的模態(tài)測(cè)試與分析[D];電子科技大學(xué);2007年
3 陳令國(guó);行星齒輪傳動(dòng)系統(tǒng)的建模與仿真研究[D];遼寧工程技術(shù)大學(xué);2007年
4 胡威;基于遺傳算法的數(shù)控壓齒機(jī)支撐體的優(yōu)化設(shè)計(jì)[D];哈爾濱工程大學(xué);2009年
5 張領(lǐng)強(qiáng);行星齒輪傳動(dòng)機(jī)構(gòu)的數(shù)據(jù)庫(kù)系統(tǒng)建立及其創(chuàng)新設(shè)計(jì)[D];南京航空航天大學(xué);2009年
6 姬廣平;行星齒輪減速器多體動(dòng)力學(xué)分析及軟件開發(fā)[D];西南交通大學(xué);2013年
7 徐湛楠;行星齒輪減速器試驗(yàn)臺(tái)的設(shè)計(jì)與研究[D];合肥工業(yè)大學(xué);2013年
,本文編號(hào):1804736
本文鏈接:http://sikaile.net/jixiegongchenglunwen/1804736.html